Internet-Draft PQ Composite ML-DSA July 2024
Ounsworth, et al. Expires 9 January 2025 [Page]
Workgroup:
LAMPS
Internet-Draft:
draft-ietf-lamps-pq-composite-sigs-02
Published:
Intended Status:
Standards Track
Expires:
Authors:
M. Ounsworth
Entrust
J. Gray
Entrust
M. Pala
OpenCA Labs
J. Klaussner
Bundesdruckerei GmbH
S. Fluhrer
Cisco Systems

Composite ML-DSA for use in Internet PKI

Abstract

This document introduces a set of signature schemes that use pairs of cryptographic elements such as public keys and signatures to combine their security properties. These schemes effectively mitigate risks associated with the adoption of post-quantum cryptography and are fully compatible with existing X.509, PKIX, and CMS data structures and protocols. This document defines thirteen specific pairwise combinations, namely ML-DSA Composite Schemes, that blend ML-DSA with traditional algorithms such as RSA, ECDSA, Ed25519, and Ed448. These combinations are tailored to meet security best practices and regulatory requirements.

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on 9 January 2025.

Table of Contents

1. Changes since the -01 version

1.1. Changes since adoption by the lamps working group

  • Added back in the version 13 changes which were dropped by mistake in the initial -00 adopted version

  • Added Scott Fluher as an author due to his valuable contributions and participation in the draft writing process

  • Removed the reference to Parallel PKI's in implementation considerations as it isn't adding value to the discussion

  • Resolved comments from Kris Kwiatkowski regarding FIPS

2. Introduction

The advent of quantum computing poses a significant threat to current cryptographic systems. Traditional cryptographic algorithms such as RSA, Diffie-Hellman, DSA, and their elliptic curve variants are vulnerable to quantum attacks. During the transition to post-quantum cryptography (PQC), there is considerable uncertainty regarding the robustness of both existing and new cryptographic algorithms. While we can no longer fully trust traditional cryptography, we also cannot immediately place complete trust in post-quantum replacements until they have undergone extensive scrutiny and real-world testing to uncover and rectify potential implementation flaws.

Unlike previous migrations between cryptographic algorithms, the decision of when to migrate and which algorithms to adopt is far from straightforward. Even after the migration period, it may be advantageous for an entity's cryptographic identity to incorporate multiple public-key algorithms to enhance security.

Cautious implementers may opt to combine cryptographic algorithms in such a way that an attacker would need to break all of them simultaneously to compromise the protected data. These mechanisms are referred to as Post-Quantum/Traditional (PQ/T) Hybrids [I-D.driscoll-pqt-hybrid-terminology].

Certain jurisdictions are already recommending or mandating that PQC lattice schemes be used exclusively within a PQ/T hybrid framework. The use of Composite scheme provides a straightforward implementation of hybrid solutions compatible with (and advocated by) some governments and cybersecurity agencies [BSI2021].

2.1. Conventions and Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP14 [RFC2119] [RFC8174] when, and only when, they appear in all capitals, as shown here. These words may also appear in this document in lower case as plain English words, absent their normative meanings.

This document is consistent with the terminology defined in [I-D.driscoll-pqt-hybrid-terminology]. In addition, the following terminology is used throughout this document:

ALGORITHM: A standardized cryptographic primitive, as well as any ASN.1 structures needed for encoding data and metadata needed to use the algorithm. This document is primarily concerned with algorithms for producing digital signatures.

BER: Basic Encoding Rules (BER) as defined in [X.690].

CLIENT: Any software that is making use of a cryptographic key. This includes a signer, verifier, encrypter, decrypter.

COMPONENT ALGORITHM: A single basic algorithm which is contained within a composite algorithm.

COMPOSITE ALGORITHM: An algorithm which is a sequence of two component algorithms, as defined in Section 5.

DER: Distinguished Encoding Rules as defined in [X.690].

LEGACY: For the purposes of this document, a legacy algorithm is any cryptographic algorithm currently in use which is not believed to be resistant to quantum cryptanalysis.

PKI: Public Key Infrastructure, as defined in [RFC5280].

POST-QUANTUM ALGORITHM: Any cryptographic algorithm which is believed to be resistant to classical and quantum cryptanalysis, such as the algorithms being considered for standardization by NIST.

PUBLIC / PRIVATE KEY: The public and private portion of an asymmetric cryptographic key, making no assumptions about which algorithm.

SIGNATURE: A digital cryptographic signature, making no assumptions about which algorithm.

STRIPPING ATTACK: An attack in which the attacker is able to downgrade the cryptographic object to an attacker-chosen subset of original set of component algorithms in such a way that it is not detectable by the receiver. For example, substituting a composite public key or signature for a version with fewer components.

3. Composite Signatures Schemes

The engineering principle behind the definition of Composite schemes is to define a new family of algorithms that combines the use of cryptographic operations from two different ones: ML-DSA one and a traditional one. The complexity of combining security properties from the selected two algorithms is handled at the cryptographic library or cryptographic module, thus minimal changes are expected at the application or protocol level. Composite schemes are fully compatible with the X.509 model: composite public keys, composite private keys, and ciphertexts can be carried in existing data structures and protocols such as PKCS#10 [RFC2986], CMP [RFC4210], X.509 [RFC5280], CMS [RFC5652], and the Trust Anchor Format [RFC5914].

Composite schemes are defined as cryptographic primitives that consists of three algorithms:

A composite signature allows the security properties of the two underlying algorithms to be combined via standard signature operations such as generation and verify and can be used in all applications that use signatures without the need for changes in data structures or protocol messages.

3.1. Composite Schemes PreHashing

Composite schemes' signature generation process and composite signature verification process are designed to provide security properties meant to address specific issues related to the use multiple algorithms and they require the use of pre-hasing. In Composite schemes, the value of the DER encoding of the selected signature scheme is concatenated with the calculated Hash over the original message.

The output is then used as input for the Sign() and Verify() functions.

4. Cryptographic Primitives

4.1. Key Generation

To generate a new keypair for Composite schemes, the KeyGen() -> (pk, sk) function is used. The KeyGen() function calls the two key generation functions of the component algorithms for the Composite keypair in no particular order. Multi-process or multi-threaded applications might choose to execute the key generation functions in parallel for better key generation performance.

The generated public key structure is described in Section 5.2, while the corresponding composite secret key structure is defined in Section 5.3.

The following process is used to generate composite keypair values:

KeyGen() -> (pk, sk)

Input:
     sk_1, sk_2         Private keys for each component.

     pk_1, pk_2         Public keys for each component.

     A1, A2             Component signature algorithms.

Output:
     (pk, sk)           The composite keypair.

Function KeyGen():

  (pk_1, sk_1) <- A1.KeyGen()
  (pk_2, sk_2) <- A2.KeyGen()

  if NOT (pk_1, sk_1) or NOT (pk_2, sk_2):
    // Component key generation failure
    return NULL

  (pk, sk) <- encode[(pk_1, sk_1), (pk_2, sk_2)]
  if NOT (pk, sk):
    // Encoding failure
    return False

  // Success
  return (pk, sk)

Figure 1: Composite KeyGen(pk, sk)

The key generation functions MUST be executed for both algorithms. Compliant parties MUST NOT use or import component keys that are used in other contexts, combinations, or by themselves (i.e., not only in X.509 certificates).

4.2. Signature Generation

Composite schemes' signatures provide important properties for multi-key environments such as non-separability and key-binding. For more information on the additional security properties and their applicability to multi-key or hybrid environments, please refer to [I-D.hale-pquip-hybrid-signature-spectrums] and the use of labels as defined in [Bindel2017]

Composite signature generation starts with pre-hashing the message that is concatenated with the Domain separator Section 7.1. After that, the signature process for each component algorithm is invoked and the values are then placed in the CompositeSignatureValue structure defined in Section 6.1.

A composite signature's value MUST include two signature components and MUST be in the same order as the components from the corresponding signing key.

The following process is used to generate composite signature values.

Sign (sk, Message) -> (signature)
Input:
     K1, K2             Signing private keys for each component. See note below on
                        composite inputs.

     A1, A2             Component signature algorithms. See note below on
                        composite inputs.

     Message            The Message to be signed, an octet string

     HASH               The Message Digest Algorithm used for pre-hashing.  See section
                        on pre-hashing below.

     Domain             Domain separator value for binding the signature to the Composite OID.
                        See section on Domain Separators below.

Output:
     signature          The composite signature, a CompositeSignatureValue

Signature Generation Process:

   1. Compute the new Message M' by concatenating the Domain identifier (i.e., the DER encoding of the Composite signature algorithm identifier) with the Hash of the Message

         M' := Domain || HASH(Message)

   2. Generate the 2 component signatures independently, by calculating the signature over M'
      according to their algorithm specifications that might involve the use of the hash-n-sign paradigm.

         S1 := Sign( K1, A1, M' )
         S2 := Sign( K2, A2, M' )

   3. Encode each component signature S1 and S2 into a BIT STRING
      according to its algorithm specification.

        signature := NULL

        IF (S1 != NULL) and (S2 != NULL):
          signature := Sequence { S1, S2 }

   4. Output signature

        return signature
Figure 2: Composite Sign(sk, Message)

It is possible to construct CompositePrivateKey(s) to generate signatures from component keys stored in separate software or hardware keystores. Variations in the process to accommodate particular private key storage mechanisms are considered to be conformant to this document so long as it produces the same output as the process sketched above.

4.2.1. Signature Verify

Verification of a composite signature involves reconstructing the M' message first by concatenating the Domain separator (i.e., the DER encoding of the used Composite scheme's OID) with the Hash of the original message and then applying each component algorithm's verification process to the new message M'.

Compliant applications MUST output "Valid signature" (true) if and only if all component signatures were successfully validated, and "Invalid signature" (false) otherwise.

The following process is used to perform this verification.

Composite Verify(pk, Message, signature)
Input:
     P1, P2             Public verification keys. See note below on
                        composite inputs.

     Message            Message whose signature is to be verified,
                        an octet string.

     signature          CompositeSignatureValue containing the component
                        signature values (S1 and S2) to be verified.

     A1, A2             Component signature algorithms. See note
                        below on composite inputs.

     HASH               The Message Digest Algorithm for pre-hashing.  See
                        section on pre-hashing the message below.

     Domain             Domain separator value for binding the signature to the Composite OID.
                        See section on Domain Separators below.

Output:
    Validity (bool)    "Valid signature" (true) if the composite
                        signature is valid, "Invalid signature"
                        (false) otherwise.

Signature Verification Procedure::
   1. Check keys, signatures, and algorithms lists for consistency.

      If Error during Desequencing, or the sequences have
      different numbers of elements, or any of the public keys
      P1 or P2 and the algorithm identifiers A1 or A2 are
      composite then output "Invalid signature" and stop.

   2. Compute a Hash of the Message

         M' = Domain || HASH(Message)

   3. Check each component signature individually, according to its
       algorithm specification.
       If any fail, then the entire signature validation fails.

       if not verify( P1, M', S1, A1 ) then
            output "Invalid signature"
       if not verify( P2, M', S2, A2 ) then
            output "Invalid signature"

       if all succeeded, then
        output "Valid signature"
Figure 3: Composite Verify(pk, Message, signature)

It is possible to construct CompositePublicKey(s) to verify signatures from component keys stored in separate software or hardware keystores. Variations in the process to accommodate particular private key storage mechanisms are considered to be conformant to this document so long as it produces the same output as the process sketched above.

5. Composite Key Structures

In order for signatures to be composed of multiple algorithms, we define encodings consisting of a sequence of signature primitives (aka "component algorithms") such that these structures can be used as a drop-in replacement for existing signature fields such as those found in PKCS#10 [RFC2986], CMP [RFC4210], X.509 [RFC5280], CMS [RFC5652].

5.1. pk-CompositeSignature

The following ASN.1 Information Object Class is a template to be used in defining all composite Signature public key types.

pk-CompositeSignature {OBJECT IDENTIFIER:id,
  FirstPublicKeyType,SecondPublicKeyType}
    PUBLIC-KEY ::= {
      IDENTIFIER id
      KEY SEQUENCE {
        firstPublicKey BIT STRING (CONTAINING FirstPublicKeyType),
        secondPublicKey BIT STRING (CONTAINING SecondPublicKeyType)
      }
      PARAMS ARE absent
      CERT-KEY-USAGE { digitalSignature, nonRepudiation, keyCertSign, cRLSign}
    }

As an example, the public key type pk-MLDSA65-ECDSA-P256-SHA256 is defined as:

pk-MLDSA65-ECDSA-P256-SHA256 PUBLIC-KEY ::=
  pk-CompositeSignature{ id-MLDSA65-ECDSA-P256-SHA256,
  OCTET STRING, ECPoint}

The full set of key types defined by this specification can be found in the ASN.1 Module in Section 9.

5.2. CompositeSignaturePublicKey

Composite public key data is represented by the following structure:

CompositeSignaturePublicKey ::= SEQUENCE SIZE (2) OF BIT STRING

A composite key MUST contain two component public keys. The order of the component keys is determined by the definition of the corresponding algorithm identifier as defined in section Section 7.

Some applications may need to reconstruct the SubjectPublicKeyInfo objects corresponding to each component public key. Table 2 in Section 7 provides the necessary mapping between composite and their component algorithms for doing this reconstruction. This also motivates the design choice of SEQUENCE OF BIT STRING instead of SEQUENCE OF OCTET STRING; using BIT STRING allows for easier transcription between CompositeSignaturePublicKey and SubjectPublicKeyInfo.

When the CompositeSignaturePublicKey must be provided in octet string or bit string format, the data structure is encoded as specified in Section 5.4.

Component keys of a CompositeSignaturePublicKey MUST NOT be used in any other type of key or as a standalone key.

5.3. CompositeSignaturePrivateKey

Use cases that require an interoperable encoding for composite private keys, such as when private keys are carried in PKCS #12 [RFC7292], CMP [RFC4210] or CRMF [RFC4211] MUST use the following structure.

CompositeSignaturePrivateKey ::= SEQUENCE SIZE (2) OF OneAsymmetricKey

Each element is a OneAsymmetricKey` [RFC5958] object for a component private key.

The parameters field MUST be absent.

The order of the component keys is the same as the order defined in Section 5.2 for the components of CompositeSignaturePublicKey.

When a CompositeSignaturePrivateKey is conveyed inside a OneAsymmetricKey structure (version 1 of which is also known as PrivateKeyInfo) [RFC5958], the privateKeyAlgorithm field SHALL be set to the corresponding composite algorithm identifier defined according to Section 7, the privateKey field SHALL contain the CompositeSignaturePrivateKey, and the publicKey field MUST NOT be present. Associated public key material MAY be present in the CompositeSignaturePrivateKey.

In some usecases the private keys that comprise a composite key may not be represented in a single structure or even be contained in a single cryptographic module; for example if one component is within the FIPS boundary of a cryptographic module and the other is not; see {sec-fips} for more discussion. The establishment of correspondence between public keys in a CompositeSignaturePublicKey and private keys not represented in a single composite structure is beyond the scope of this document.

Component keys of a CompositeSignaturePrivateKey MUST NOT be used in any other type of key or as a standalone key.

5.4. Encoding Rules

Many protocol specifications will require that the composite public key and composite private key data structures be represented by an octet string or bit string.

When an octet string is required, the DER encoding of the composite data structure SHALL be used directly.

CompositeSignaturePublicKeyOs ::= OCTET STRING (CONTAINING CompositeSignaturePublicKey ENCODED BY der)

When a bit string is required, the octets of the DER encoded composite data structure SHALL be used as the bits of the bit string, with the most significant bit of the first octet becoming the first bit, and so on, ending with the least significant bit of the last octet becoming the last bit of the bit string.

CompositeSignaturePublicKeyBs ::= BIT STRING (CONTAINING CompositeSignaturePublicKey ENCODED BY der)

In the interests of simplicity and avoiding compatibility issues, implementations that parse these structures MAY accept both BER and DER.

5.5. Key Usage Bits

For protocols such as X.509 [RFC5280] that specify key usage along with the public key, then the composite public key associated with a composite signature MUST have a signing-type key usage. This is because the composite public key can only be used in situations that are appropriate for both component algorithms, so even if the classical component key supports both signing and encryption, the post-quantum algorithms do not.

If the keyUsage extension is present in a Certification Authority (CA) certificate that indicates a composite key, then any combination of the following values MAY be present and any other values MUST NOT be present:

digitalSignature;
nonRepudiation;
keyCertSign; and
cRLSign.

If the keyUsage extension is present in an End Entity (EE) certificate that indicates a composite key, then any combination of the following values MAY be present and any other values MUST NOT be present:

digitalSignature; and
nonRepudiation;

6. Composite Signature Structures

6.1. sa-CompositeSignature

The ASN.1 algorithm object for a composite signature is:

sa-CompositeSignature {
  OBJECT IDENTIFIER:id,
    PUBLIC-KEY:publicKeyType }
    SIGNATURE-ALGORITHM ::= {
        IDENTIFIER id
        VALUE CompositeSignatureValue
        PARAMS ARE absent
        PUBLIC-KEYS { publicKeyType }
        SMIME-CAPS { IDENTIFIED BY id }
    }

The following is an explanation how SIGNATURE-ALGORITHM elements are used to create Composite Signatures:

Table 1
SIGNATURE-ALGORITHM element Definition
IDENTIFIER The Object ID used to identify the composite Signature Algorithm
VALUE The Sequence of BIT STRINGS for each component signature value
PARAMS Parameters are absent
PUBLIC-KEYS The composite key required to produce the composite signature

6.2. CompositeSignatureValue

The output of the composite signature algorithm is the DER encoding of the following structure:

CompositeSignatureValue ::= SEQUENCE SIZE (2) OF BIT STRING

Where each BIT STRING within the SEQUENCE is a signature value produced by one of the component keys. It MUST contain one signature value produced by each component algorithm, and in the same order as specified in the object identifier.

The choice of SEQUENCE SIZE (2) OF BIT STRING, rather than for example a single BIT STRING containing the concatenated signature values, is to gracefully handle variable-length signature values by taking advantage of ASN.1's built-in length fields.

7. Algorithm Identifiers

This section defines the algorithm identifiers for explicit combinations. For simplicity and prototyping purposes, the signature algorithm object identifiers specified in this document are the same as the composite key object Identifiers. A proper implementation should not presume that the object ID of a composite key will be the same as its composite signature algorithm.

This section is not intended to be exhaustive and other authors may define other composite signature algorithms so long as they are compatible with the structures and processes defined in this and companion public and private key documents.

Some use-cases desire the flexibility for clients to use any combination of supported algorithms, while others desire the rigidity of explicitly-specified combinations of algorithms.

The following table summarizes the details for each explicit composite signature algorithms:

The OID referenced are TBD for prototyping only, and the following prefix is used for each:

replace <CompSig> with the String "2.16.840.1.114027.80.8.1"

Therefore <CompSig>.1 is equal to 2.16.840.1.114027.80.8.1.1

Signature public key types:

Table 2: Composite Signature Algorithms
Composite Signature AlgorithmID OID First AlgorithmID Second AlgorithmID Pre-Hash
id-MLDSA44-RSA2048-PSS-SHA256 <CompSig>.1 id-ML-DSA-44 id-RSASA-PSS with id-sha256 id-sha256
id-MLDSA44-RSA2048-PKCS15-SHA256 <CompSig>.2 id-ML-DSA-44 sha256WithRSAEncryption id-sha256
id-MLDSA44-Ed25519-SHA512 <CompSig>.3 id-ML-DSA-44 id-Ed25519 id-sha512
id-MLDSA44-ECDSA-P256-SHA256 <CompSig>.4 id-ML-DSA-44 ecdsa-with-SHA256 with secp256r1 id-sha256
id-MLDSA44-ECDSA-brainpoolP256r1-SHA256 <CompSig>.5 id-ML-DSA-44 ecdsa-with-SHA256 with brainpoolP256r1 id-sha256
id-MLDSA65-RSA3072-PSS-SHA512 <CompSig>.6 id-ML-DSA-65 id-RSASA-PSS with id-sha512 id-sha512
id-MLDSA65-RSA3072-PKCS15-SHA512 <CompSig>.7 id-ML-DSA-65 sha512WithRSAEncryption id-sha512
id-MLDSA65-ECDSA-P256-SHA512 <CompSig>.8 id-ML-DSA-65 ecdsa-with-SHA512 with secp256r1 id-sha512
id-MLDSA65-ECDSA-brainpoolP256r1-SHA512 <CompSig>.9 id-ML-DSA-65 ecdsa-with-SHA512 with brainpoolP256r1 id-sha512
id-MLDSA65-Ed25519-SHA512 <CompSig>.10 id-ML-DSA-65 id-Ed25519 id-sha512
id-MLDSA87-ECDSA-P384-SHA512 <CompSig>.11 id-ML-DSA-87 ecdsa-with-SHA512 with secp384r1 id-sha512
id-MLDSA87-ECDSA-brainpoolP384r1-SHA512 <CompSig>.12 id-ML-DSA-87 ecdsa-with-SHA512 with brainpoolP384r1 id-sha512
id-MLDSA87-Ed448-SHA512 <CompSig>.13 id-ML-DSA-87 id-Ed448 id-sha512

The table above contains everything needed to implement the listed explicit composite algorithms. See the ASN.1 module in section Section 9 for the explicit definitions of the above Composite signature algorithms.

Full specifications for the referenced algorithms can be found in Appendix A.

7.1. Domain Separators

As mentioned above, the OID input value is used as a domain separator for the Composite Signature Generation and verification process and is the DER encoding of the OID. The following table shows the HEX encoding for each Signature AlgorithmID.

Table 3: Composite Signature Domain Separators
Composite Signature AlgorithmID Domain Separator (in Hex encoding)
id-MLDSA44-RSA2048-PSS-SHA256 060B6086480186FA6B50080101
id-MLDSA44-RSA2048-PKCS15-SHA256 060B6086480186FA6B50080102
id-MLDSA44-Ed25519-SHA512 060B6086480186FA6B50080103
id-MLDSA44-ECDSA-P256-SHA256 060B6086480186FA6B50080104
id-MLDSA44-ECDSA-brainpoolP256r1-SHA256 060B6086480186FA6B50080105
id-MLDSA65-RSA3072-PSS-SHA512 060B6086480186FA6B50080106
id-MLDSA65-RSA3072-PKCS15-SHA512 060B6086480186FA6B50080107
id-MLDSA65-ECDSA-P256-SHA512 060B6086480186FA6B50080108
id-MLDSA65-ECDSA-brainpoolP256r1-SHA512 060B6086480186FA6B50080109
id-MLDSA65-Ed25519-SHA512 060B6086480186FA6B5008010A
id-MLDSA87-ECDSA-P384-SHA512 060B6086480186FA6B5008010B
id-MLDSA87-ECDSA-brainpoolP384r1-SHA512 060B6086480186FA6B5008010C
id-MLDSA87-Ed448-SHA512 060B6086480186FA6B5008010D

7.2. Notes on id-MLDSA44-RSA2048-PSS-SHA256

Use of RSA-PSS [RFC8017] deserves a special explanation.

The RSA component keys MUST be generated at the 2048-bit security level in order to match with ML-DSA-44

As with the other composite signature algorithms, when id-MLDSA44-RSA2048-PSS-SHA256 is used in an AlgorithmIdentifier, the parameters MUST be absent. id-MLDSA44-RSA2048-PSS-SHA256 SHALL instantiate RSA-PSS with the following parameters:

Table 4: RSA-PSS 2048 Parameters
RSA-PSS Parameter Value
Mask Generation Function mgf1
Mask Generation params SHA-256
Message Digest Algorithm SHA-256
Salt Length in bits 256

where:

  • Mask Generation Function (mgf1) is defined in [RFC8017]

  • SHA-256 is defined in [RFC6234].

7.3. Notes on id-MLDSA65-RSA3072-PSS-SHA512

The RSA component keys MUST be generated at the 3072-bit security level in order to match with ML-DSA-65.

As with the other composite signature algorithms, when id-MLDSA65-RSA3072-PSS-SHA512 is used in an AlgorithmIdentifier, the parameters MUST be absent. id-MLDSA65-RSA3072-PSS-SHA512 SHALL instantiate RSA-PSS with the following parameters:

Table 5: RSA-PSS 3072 Parameters
RSA-PSS Parameter Value
Mask Generation Function mgf1
Mask Generation params SHA-512
Message Digest Algorithm SHA-512
Salt Length in bits 512

where:

  • Mask Generation Function (mgf1) is defined in [RFC8017]

  • SHA-512 is defined in [RFC6234].

8. Use in CMS

[EDNOTE: The convention in LAMPS is to specify algorithms and their CMS conventions in separate documents. Here we have presented them in the same document, but this section has been written so that it can easily be moved to a standalone document.]

Composite Signature algorithms MAY be employed for one or more recipients in the CMS signed-data content type [RFC5652].

8.1. Underlying Components

When a particular Composite Signature OID is supported in CMS, an implementation SHOULD support the corresponding Secure Hash algorithm identifier in Table 6 that was used as the pre-hash.

The following table lists the MANDATORY HASH algorithms to preserve security and performance characteristics of each composite algorithm.

Table 6: Composite Signature SHA Algorithms
Composite Signature AlgorithmID Secure Hash
id-MLDSA44-RSA2048-PSS-SHA256 SHA256
id-MLDSA44-RSA2048-PKCS15-SHA256 SHA256
id-MLDSA44-Ed25519-SHA512 SHA512
id-MLDSA44-ECDSA-P256-SHA256 SHA256
id-MLDSA44-ECDSA-brainpoolP256r1-SHA256 SHA256
id-MLDSA65-RSA3072-PSS-SHA512 SHA512
id-MLDSA65-RSA3072-PKCS15-SHA512 SHA512
id-MLDSA65-ECDSA-P256-SHA512 SHA512
id-MLDSA65-ECDSA-brainpoolP256r1-SHA512 SHA512
id-MLDSA65-Ed25519-SHA512 SHA512
id-MLDSA87-ECDSA-P384-SHA512 SHA512
id-MLDSA87-ECDSA-brainpoolP384r1-SHA512 SHA512
id-MLDSA87-Ed448-SHA512 SHA512

where:

  • SHA2 instantiations are defined in [FIPS180].

8.2. SignedData Conventions

As specified in CMS [RFC5652], the digital signature is produced from the message digest and the signer's private key. The signature is computed over different values depending on whether signed attributes are absent or present.

When signed attributes are absent, the composite signature is computed over the content. When signed attributes are present, a hash is computed over the content using the same hash function that is used in the composite pre-hash, and then a message-digest attribute is constructed to contain the resulting hash value, and then the result of DER encoding the set of signed attributes, which MUST include a content-type attribute and a message-digest attribute, and then the composite signature is computed over the DER-encoded output. In summary:

IF (signed attributes are absent)
   THEN Composite_Sign(content)
ELSE message-digest attribute = Hash(content);
   Composite_Sign(DER(SignedAttributes))

When using Composite Signatures, the fields in the SignerInfo are used as follows:

digestAlgorithm: The digestAlgorithm contains the one-way hash function used by the CMS signer.

signatureAlgorithm: The signatureAlgorithm MUST contain one of the the Composite Signature algorithm identifiers as specified in Table 6

signature: The signature field contains the signature value resulting from the composite signing operation of the specified signatureAlgorithm.

8.3. Certificate Conventions

The conventions specified in this section augment RFC 5280 [RFC5280].

The willingness to accept a composite Signature Algorithm MAY be signaled by the use of the SMIMECapabilities Attribute as specified in Section 2.5.2. of [RFC8551] or the SMIMECapabilities certificate extension as specified in [RFC4262].

The intended application for the public key MAY be indicated in the key usage certificate extension as specified in Section 4.2.1.3 of [RFC5280]. If the keyUsage extension is present in a certificate that conveys a composite Signature public key, then the key usage extension MUST contain only the following value:

digitalSignature
nonRepudiation
keyCertSign
cRLSign

The keyEncipherment and dataEncipherment values MUST NOT be present. That is, a public key intended to be employed only with a composite signature algorithm MUST NOT also be employed for data encryption. This requirement does not carry any particular security consideration; only the convention that signature keys be identified with 'digitalSignature','nonRepudiation','keyCertSign' or 'cRLSign' key usages.

8.4. SMIMECapabilities Attribute Conventions

Section 2.5.2 of [RFC8551] defines the SMIMECapabilities attribute to announce a partial list of algorithms that an S/MIME implementation can support. When constructing a CMS signed-data content type [RFC5652], a compliant implementation MAY include the SMIMECapabilities attribute that announces support for the RSA-KEM Algorithm.

The SMIMECapability SEQUENCE representing a composite signature Algorithm MUST include the appropriate object identifier as per Table 6 in the capabilityID field.

9. ASN.1 Module

<CODE STARTS>


 Composite-Signatures-2023
      { joint-iso-itu-t(2) country(16) us(840) organization(1) entrust(114027)
        algorithm(80) id-composite-signatures-2023 (TBDMOD) }

DEFINITIONS IMPLICIT TAGS ::= BEGIN

EXPORTS ALL;

IMPORTS
  PUBLIC-KEY, SIGNATURE-ALGORITHM, AlgorithmIdentifier{}
    FROM AlgorithmInformation-2009  -- RFC 5912 [X509ASN1]
      { iso(1) identified-organization(3) dod(6) internet(1)
        security(5) mechanisms(5) pkix(7) id-mod(0)
        id-mod-algorithmInformation-02(58) }

  SubjectPublicKeyInfo
    FROM PKIX1Explicit-2009
      { iso(1) identified-organization(3) dod(6) internet(1)
        security(5) mechanisms(5) pkix(7) id-mod(0)
        id-mod-pkix1-explicit-02(51) }

  OneAsymmetricKey
    FROM AsymmetricKeyPackageModuleV1
      { iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1)
        pkcs-9(9) smime(16) modules(0)
        id-mod-asymmetricKeyPkgV1(50) }

  RSAPublicKey, ECPoint
    FROM PKIXAlgs-2009
      { iso(1) identified-organization(3) dod(6)
        internet(1) security(5) mechanisms(5) pkix(7) id-mod(0)
        id-mod-pkix1-algorithms2008-02(56) }

  sa-rsaSSA-PSS
    FROM PKIX1-PSS-OAEP-Algorithms-2009
       {iso(1) identified-organization(3) dod(6) internet(1) security(5)
       mechanisms(5) pkix(7) id-mod(0) id-mod-pkix1-rsa-pkalgs-02(54)}

;

--
-- Object Identifiers
--

-- Defined in ITU-T X.690
der OBJECT IDENTIFIER ::=
  {joint-iso-itu-t asn1(1) ber-derived(2) distinguished-encoding(1)}




--
-- Signature Algorithm
--


--
-- Composite Signature basic structures
--

CompositeSignaturePublicKey ::= SEQUENCE SIZE (2) OF BIT STRING

CompositeSignaturePublicKeyOs ::= OCTET STRING (CONTAINING
                                CompositeSignaturePublicKey ENCODED BY der)

CompositeSignaturePublicKeyBs ::= BIT STRING (CONTAINING
                                CompositeSignaturePublicKey ENCODED BY der)

CompositeSignaturePrivateKey ::= SEQUENCE SIZE (2) OF OneAsymmetricKey

CompositeSignatureValue ::= SEQUENCE SIZE (2) OF BIT STRING

-- Composite Signature Value is just a sequence of OCTET STRINGS

--   CompositeSignaturePair{FirstSignatureValue, SecondSignatureValue} ::=
--     SEQUENCE {
--      signaturevalue1 FirstSignatureValue,
--      signaturevalue2 SecondSignatureValue }

   -- An Explicit Compsite Signature is a set of Signatures which
   -- are composed of OCTET STRINGS
--   ExplicitCompositeSignatureValue ::= CompositeSignaturePair {
--       OCTET STRING,OCTET STRING}


--
-- Information Object Classes
--

pk-CompositeSignature {OBJECT IDENTIFIER:id,
  FirstPublicKeyType,SecondPublicKeyType}
    PUBLIC-KEY ::= {
      IDENTIFIER id
      KEY SEQUENCE {
        firstPublicKey BIT STRING (CONTAINING FirstPublicKeyType),
        secondPublicKey BIT STRING (CONTAINING SecondPublicKeyType)
      }
      PARAMS ARE absent
      CERT-KEY-USAGE { digitalSignature, nonRepudiation, keyCertSign, cRLSign}
    }


sa-CompositeSignature{OBJECT IDENTIFIER:id,
   PUBLIC-KEY:publicKeyType }
      SIGNATURE-ALGORITHM ::=  {
         IDENTIFIER id
         VALUE CompositeSignatureValue
         PARAMS ARE absent
         PUBLIC-KEYS {publicKeyType}
         SMIME-CAPS { IDENTIFIED BY id }
      }

-- TODO: OID to be replaced by IANA
id-MLDSA44-RSA2048-PSS-SHA256 OBJECT IDENTIFIER ::= {
   joint-iso-itu-t(2) country(16) us(840) organization(1)
   entrust(114027) algorithm(80) composite(8) signature(1) 1 }

pk-MLDSA44-RSA2048-PSS-SHA256 PUBLIC-KEY ::=
  pk-CompositeSignature{ id-MLDSA44-RSA2048-PSS-SHA256,
  OCTET STRING, RSAPublicKey}

sa-MLDSA44-RSA2048-PSS-SHA256 SIGNATURE-ALGORITHM ::=
    sa-CompositeSignature{
       id-MLDSA44-RSA2048-PSS-SHA256,
       pk-MLDSA44-RSA2048-PSS-SHA256 }

-- TODO: OID to be replaced by IANA
id-MLDSA44-RSA2048-PKCS15-SHA256 OBJECT IDENTIFIER ::= {
   joint-iso-itu-t(2) country(16) us(840) organization(1)
   entrust(114027) algorithm(80) composite(8) signature(1) 2 }

pk-MLDSA44-RSA2048-PKCS15-SHA256 PUBLIC-KEY ::=
  pk-CompositeSignature{ id-MLDSA44-RSA2048-PKCS15-SHA256,
  OCTET STRING, RSAPublicKey}

sa-MLDSA44-RSA2048-PKCS15-SHA256 SIGNATURE-ALGORITHM ::=
    sa-CompositeSignature{
       id-MLDSA44-RSA2048-PKCS15-SHA256,
       pk-MLDSA44-RSA2048-PKCS15-SHA256 }


-- TODO: OID to be replaced by IANA
id-MLDSA44-Ed25519-SHA512 OBJECT IDENTIFIER ::= {
   joint-iso-itu-t(2) country(16) us(840) organization(1)
   entrust(114027) algorithm(80) composite(8) signature(1) 3 }

pk-MLDSA44-Ed25519-SHA512 PUBLIC-KEY ::=
  pk-CompositeSignature{ id-MLDSA44-Ed25519-SHA512,
  OCTET STRING, ECPoint}

sa-MLDSA44-Ed25519-SHA512 SIGNATURE-ALGORITHM ::=
    sa-CompositeSignature{
       id-MLDSA44-Ed25519-SHA512,
       pk-MLDSA44-Ed25519-SHA512 }


-- TODO: OID to be replaced by IANA
id-MLDSA44-ECDSA-P256-SHA256 OBJECT IDENTIFIER ::= {
   joint-iso-itu-t(2) country(16) us(840) organization(1)
   entrust(114027) algorithm(80) composite(8) signature(1) 4 }

pk-MLDSA44-ECDSA-P256-SHA256 PUBLIC-KEY ::=
  pk-CompositeSignature{ id-MLDSA44-ECDSA-P256-SHA256,
  OCTET STRING, ECPoint}

sa-MLDSA44-ECDSA-P256-SHA256 SIGNATURE-ALGORITHM ::=
    sa-CompositeSignature{
       id-MLDSA44-ECDSA-P256-SHA256,
       pk-MLDSA44-ECDSA-P256-SHA256 }


-- TODO: OID to be replaced by IANA
id-MLDSA44-ECDSA-brainpoolP256r1-SHA256 OBJECT IDENTIFIER ::= {
   joint-iso-itu-t(2) country(16) us(840) organization(1)
   entrust(114027) algorithm(80) composite(8) signature(1) 5 }

pk-MLDSA44-ECDSA-brainpoolP256r1-SHA256 PUBLIC-KEY ::=
  pk-CompositeSignature{ id-MLDSA44-ECDSA-brainpoolP256r1-SHA256,
  OCTET STRING, ECPoint}

sa-MLDSA44-ECDSA-brainpoolP256r1-SHA256 SIGNATURE-ALGORITHM ::=
    sa-CompositeSignature{
       id-MLDSA44-ECDSA-brainpoolP256r1-SHA256,
       pk-MLDSA44-ECDSA-brainpoolP256r1-SHA256 }


-- TODO: OID to be replaced by IANA
id-MLDSA65-RSA3072-PSS-SHA512 OBJECT IDENTIFIER ::= {
   joint-iso-itu-t(2) country(16) us(840) organization(1)
   entrust(114027) algorithm(80) composite(8) signature(1) 6 }

pk-MLDSA65-RSA3072-PSS-SHA512 PUBLIC-KEY ::=
  pk-CompositeSignature{ id-MLDSA65-RSA3072-PSS-SHA512,
  OCTET STRING, RSAPublicKey}

sa-MLDSA65-RSA3072-PSS-SHA512 SIGNATURE-ALGORITHM ::=
    sa-CompositeSignature{
       id-MLDSA65-RSA3072-PSS-SHA512,
       pk-MLDSA65-RSA3072-PSS-SHA512 }


-- TODO: OID to be replaced by IANA
id-MLDSA65-RSA3072-PKCS15-SHA512 OBJECT IDENTIFIER ::= {
   joint-iso-itu-t(2) country(16) us(840) organization(1)
   entrust(114027) algorithm(80) composite(8) signature(1) 7 }

pk-MLDSA65-RSA3072-PKCS15-SHA512 PUBLIC-KEY ::=
  pk-CompositeSignature{ id-MLDSA65-RSA3072-PKCS15-SHA512,
  OCTET STRING, RSAPublicKey}

sa-MLDSA65-RSA3072-PKCS15-SHA512 SIGNATURE-ALGORITHM ::=
    sa-CompositeSignature{
       id-MLDSA65-RSA3072-PKCS15-SHA512,
       pk-MLDSA65-RSA3072-PKCS15-SHA512 }


-- TODO: OID to be replaced by IANA
id-MLDSA65-ECDSA-P256-SHA512 OBJECT IDENTIFIER ::= {
   joint-iso-itu-t(2) country(16) us(840) organization(1)
   entrust(114027) algorithm(80) composite(8) signature(1) 8 }

pk-MLDSA65-ECDSA-P256-SHA512 PUBLIC-KEY ::=
  pk-CompositeSignature{ id-MLDSA65-ECDSA-P256-SHA512,
  OCTET STRING, ECPoint}

sa-MLDSA65-ECDSA-P256-SHA512 SIGNATURE-ALGORITHM ::=
    sa-CompositeSignature{
       id-MLDSA65-ECDSA-P256-SHA512,
       pk-MLDSA65-ECDSA-P256-SHA512 }


-- TODO: OID to be replaced by IANA
id-MLDSA65-ECDSA-brainpoolP256r1-SHA512 OBJECT IDENTIFIER ::= {
   joint-iso-itu-t(2) country(16) us(840) organization(1)
   entrust(114027) algorithm(80) composite(8) signature(1) 9 }

pk-id-MLDSA65-ECDSA-brainpoolP256r1-SHA512 PUBLIC-KEY ::=
  pk-CompositeSignature{ id-MLDSA65-ECDSA-brainpoolP256r1-SHA512,
  OCTET STRING, ECPoint}

sa-id-MLDSA65-ECDSA-brainpoolP256r1-SHA512 SIGNATURE-ALGORITHM ::=
    sa-CompositeSignature{
       id-MLDSA65-ECDSA-brainpoolP256r1-SHA512,
       pk-id-MLDSA65-ECDSA-brainpoolP256r1-SHA512 }


-- TODO: OID to be replaced by IANA
id-MLDSA65-Ed25519-SHA512 OBJECT IDENTIFIER ::= {
   joint-iso-itu-t(2) country(16) us(840) organization(1)
   entrust(114027) algorithm(80) composite(8) signature(1) 10 }

pk-MLDSA65-Ed25519-SHA512 PUBLIC-KEY ::=
  pk-CompositeSignature{ id-MLDSA65-Ed25519-SHA512,
  OCTET STRING, ECPoint}

sa-MLDSA65-Ed25519-SHA512 SIGNATURE-ALGORITHM ::=
    sa-CompositeSignature{
       id-MLDSA65-Ed25519-SHA512,
       pk-MLDSA65-Ed25519-SHA512 }


-- TODO: OID to be replaced by IANA
id-MLDSA87-ECDSA-P384-SHA512 OBJECT IDENTIFIER ::= {
   joint-iso-itu-t(2) country(16) us(840) organization(1)
   entrust(114027) algorithm(80) composite(8) signature(1) 11 }

pk-MLDSA87-ECDSA-P384-SHA512 PUBLIC-KEY ::=
  pk-CompositeSignature{ id-MLDSA87-ECDSA-P384-SHA512,
  OCTET STRING, ECPoint}

sa-MLDSA87-ECDSA-P384-SHA512 SIGNATURE-ALGORITHM ::=
    sa-CompositeSignature{
       id-MLDSA87-ECDSA-P384-SHA512,
       pk-MLDSA87-ECDSA-P384-SHA512 }


-- TODO: OID to be replaced by IANA
id-MLDSA87-ECDSA-brainpoolP384r1-SHA512 OBJECT IDENTIFIER ::= {
   joint-iso-itu-t(2) country(16) us(840) organization(1)
   entrust(114027) algorithm(80) composite(8) signature(1) 12 }

pk-MLDSA87-ECDSA-brainpoolP384r1-SHA512 PUBLIC-KEY ::=
  pk-CompositeSignature{ id-MLDSA87-ECDSA-brainpoolP384r1-SHA512,
  OCTET STRING, ECPoint}

sa-MLDSA87-ECDSA-brainpoolP384r1-SHA512 SIGNATURE-ALGORITHM ::=
    sa-CompositeSignature{
       id-MLDSA87-ECDSA-brainpoolP384r1-SHA512,
       pk-MLDSA87-ECDSA-brainpoolP384r1-SHA512 }


-- TODO: OID to be replaced by IANA
id-MLDSA87-Ed448-SHA512 OBJECT IDENTIFIER ::= {
   joint-iso-itu-t(2) country(16) us(840) organization(1)
   entrust(114027) algorithm(80) composite(8) signature(1) 13 }

pk-MLDSA87-Ed448-SHA512 PUBLIC-KEY ::=
  pk-CompositeSignature{ id-MLDSA87-Ed448-SHA512,
  OCTET STRING, ECPoint}

sa-MLDSA87-Ed448-SHA512 SIGNATURE-ALGORITHM ::=
    sa-CompositeSignature{
       id-MLDSA87-Ed448-SHA512,
       pk-MLDSA87-Ed448-SHA512 }

END

<CODE ENDS>

10. IANA Considerations

IANA is requested to allocate a value from the "SMI Security for PKIX Module Identifier" registry [RFC7299] for the included ASN.1 module, and allocate values from "SMI Security for PKIX Algorithms" to identify the fourteen Algorithms defined within.

10.1. Object Identifier Allocations

EDNOTE to IANA: OIDs will need to be replaced in both the ASN.1 module and in Table 2.

10.1.1. Module Registration - SMI Security for PKIX Module Identifier

  • Decimal: IANA Assigned - Replace TBDMOD

  • Description: Composite-Signatures-2023 - id-mod-composite-signatures

  • References: This Document

10.1.2. Object Identifier Registrations - SMI Security for PKIX Algorithms

  • id-MLDSA44-RSA2048-PSS-SHA256

  • Decimal: IANA Assigned

  • Description: id-MLDSA44-RSA2048-PSS-SHA256

  • References: This Document

  • id-MLDSA44-RSA2048-PKCS15-SHA256

  • Decimal: IANA Assigned

  • Description: id-MLDSA44-RSA2048-PKCS15-SHA256

  • References: This Document

  • id-MLDSA44-Ed25519-SHA512

  • Decimal: IANA Assigned

  • Description: id-MLDSA44-Ed25519-SHA512

  • References: This Document

  • id-MLDSA44-ECDSA-P256-SHA256

  • Decimal: IANA Assigned

  • Description: id-MLDSA44-ECDSA-P256-SHA256

  • References: This Document

  • id-MLDSA44-ECDSA-brainpoolP256r1-SHA256

  • Decimal: IANA Assigned

  • Description: id-MLDSA44-ECDSA-brainpoolP256r1-SHA256

  • References: This Document

  • id-MLDSA65-RSA3072-PSS-SHA512

  • Decimal: IANA Assigned

  • Description: id-MLDSA65-RSA3072-PSS-SHA512

  • References: This Document

  • id-MLDSA65-RSA3072-PKCS15-SHA512

  • Decimal: IANA Assigned

  • Description: id-MLDSA65-RSA3072-PKCS15-SHA512

  • References: This Document

  • id-MLDSA65-ECDSA-P256-SHA512

  • Decimal: IANA Assigned

  • Description: id-MLDSA65-ECDSA-P256-SHA512

  • References: This Document

  • id-MLDSA65-ECDSA-brainpoolP256r1-SHA512

  • Decimal: IANA Assigned

  • Description: id-MLDSA65-ECDSA-brainpoolP256r1-SHA512

  • References: This Document

  • id-MLDSA65-Ed25519-SHA512

  • Decimal: IANA Assigned

  • Description: id-MLDSA65-Ed25519-SHA512

  • References: This Document

  • id-MLDSA87-ECDSA-P384-SHA512

  • Decimal: IANA Assigned

  • Description: id-MLDSA87-ECDSA-P384-SHA512

  • References: This Document

  • id-MLDSA87-ECDSA-brainpoolP384r1-SHA512

  • Decimal: IANA Assigned

  • Description: id-MLDSA87-ECDSA-brainpoolP384r1-SHA512

  • References: This Document

  • id-MLDSA87-Ed448-SHA512

  • Decimal: IANA Assigned

  • Description: id-MLDSA87-Ed448-SHA512

  • References: This Document

11. Security Considerations

11.1. Public Key Algorithm Selection Criteria

The composite algorithm combinations defined in this document were chosen according to the following guidelines:

  1. A single RSA combination is provided at a key size of 3072 bits, matched with NIST PQC Level 3 algorithms.

  2. Elliptic curve algorithms are provided with combinations on each of the NIST [RFC6090], Brainpool [RFC5639], and Edwards [RFC7748] curves. NIST PQC Levels 1 - 3 algorithms are matched with 256-bit curves, while NIST levels 4 - 5 are matched with 384-bit elliptic curves. This provides a balance between matching classical security levels of post-quantum and traditional algorithms, and also selecting elliptic curves which already have wide adoption.

  3. NIST level 1 candidates are provided, matched with 256-bit elliptic curves, intended for constrained use cases.

If other combinations are needed, a separate specification should be submitted to the IETF LAMPS working group. To ease implementation, these specifications are encouraged to follow the construction pattern of the algorithms specified in this document.

The composite structures defined in this specification allow only for pairs of algorithms. This also does not preclude future specification from extending these structures to define combinations with three or more components.

11.2. PreHashing Algorithm Selection Criteria

As noted in the composite signature generation process and composite signature verification process, the Message should be pre-hashed into M' with the digest algorithm specified in the composite signature algorithm identifier. The selection of the digest algorithm was chosen with the following criteria:

  1. For composites paired with RSA or ECDSA, the hashing algorithm SHA256 or SHA512 is used as part of the RSA or ECDSA signature algorithm and is therefore also used as the composite prehashing algorithm.

  2. For ML-DSA signing a digest of the message is allowed as long as the hash function provides at least y bits of classical security strength against both collision and second preimage attacks. For ML-DSA-44 y is 128 bits, for ML-DSA-65 y is 192 bits and for ML-DSA-87 y is 256 bits. Therefore SHA256 is paired with RSA and ECDSA with ML-DSA-44 and SHA512 is paired with RSA and ECDSA with ML-DSA-65 and ML-DSA-87 to match the appropriate security strength.

  3. Ed25519 [RFC8032] uses SHA512 internally, therefore SHA512 is used to pre-hash the message when Ed25519 is a component algorithm.

  4. Ed448 [RFC8032] uses SHAKE256 internally, but to reduce the set of prehashing algorihtms, SHA512 was selected to pre-hash the message when Ed448 is a component algorithm.

11.3. Policy for Deprecated and Acceptable Algorithms

Traditionally, a public key, certificate, or signature contains a single cryptographic algorithm. If and when an algorithm becomes deprecated (for example, RSA-512, or SHA1), then clients performing signatures or verifications should be updated to adhere to appropriate policies.

In the composite model this is less obvious since implementers may decide that certain cryptographic algorithms have complementary security properties and are acceptable in combination even though one or both algorithms are deprecated for individual use. As such, a single composite public key or certificate may contain a mixture of deprecated and non-deprecated algorithms.

Since composite algorithms are registered independently of their component algorithms, their deprecation can be handled independently from that of their component algorithms. For example a cryptographic policy might continue to allow id-MLDSA65-ECDSA-P256-SHA512 even after ECDSA-P256 is deprecated.

When considering stripping attacks, one need consider the case where an attacker has fully compromised one of the component algorithms to the point that they can produce forged signatures that appear valid under one of the component public keys, and thus fool a victim verifier into accepting a forged signature. The protection against this attack relies on the victim verifier trusting the pair of public keys as a single composite key, and not trusting the individual component keys by themselves.

Specifically, in order to achieve this non-separability property, this specification makes two assumptions about how the verifier will establish trust in a composite public key:

  1. This specification assumes that all of the component keys within a composite key are freshly generated for the composite; ie a given public key MUST NOT appear as a component within a composite key and also within single-algorithm constructions.

  2. This specification assumes that composite public keys will be bound in a structure that contains a signature over the public key (for example, an X.509 Certificate [RFC5280]), which is chained back to a trust anchor, and where that signature algorithm is at least as strong as the composite public key that it is protecting.

There are mechanisms within Internet PKI where trusted public keys do not appear within signed structures -- such as the Trust Anchor format defined in [RFC5914]. In such cases, it is the responsibility of implementers to ensure that trusted composite keys are distributed in a way that is tamper-resistant and does not allow the component keys to be trusted independently.

12. References

12.1. Normative References

[RFC2119]
Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/RFC2119, , <https://www.rfc-editor.org/info/rfc2119>.
[RFC2986]
Nystrom, M. and B. Kaliski, "PKCS #10: Certification Request Syntax Specification Version 1.7", RFC 2986, DOI 10.17487/RFC2986, , <https://www.rfc-editor.org/info/rfc2986>.
[RFC4210]
Adams, C., Farrell, S., Kause, T., and T. Mononen, "Internet X.509 Public Key Infrastructure Certificate Management Protocol (CMP)", RFC 4210, DOI 10.17487/RFC4210, , <https://www.rfc-editor.org/info/rfc4210>.
[RFC4211]
Schaad, J., "Internet X.509 Public Key Infrastructure Certificate Request Message Format (CRMF)", RFC 4211, DOI 10.17487/RFC4211, , <https://www.rfc-editor.org/info/rfc4211>.
[RFC5280]
Cooper, D., Santesson, S., Farrell, S., Boeyen, S., Housley, R., and W. Polk, "Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile", RFC 5280, DOI 10.17487/RFC5280, , <https://www.rfc-editor.org/info/rfc5280>.
[RFC5480]
Turner, S., Brown, D., Yiu, K., Housley, R., and T. Polk, "Elliptic Curve Cryptography Subject Public Key Information", RFC 5480, DOI 10.17487/RFC5480, , <https://www.rfc-editor.org/info/rfc5480>.
[RFC5639]
Lochter, M. and J. Merkle, "Elliptic Curve Cryptography (ECC) Brainpool Standard Curves and Curve Generation", RFC 5639, DOI 10.17487/RFC5639, , <https://www.rfc-editor.org/info/rfc5639>.
[RFC5652]
Housley, R., "Cryptographic Message Syntax (CMS)", STD 70, RFC 5652, DOI 10.17487/RFC5652, , <https://www.rfc-editor.org/info/rfc5652>.
[RFC5758]
Dang, Q., Santesson, S., Moriarty, K., Brown, D., and T. Polk, "Internet X.509 Public Key Infrastructure: Additional Algorithms and Identifiers for DSA and ECDSA", RFC 5758, DOI 10.17487/RFC5758, , <https://www.rfc-editor.org/info/rfc5758>.
[RFC5958]
Turner, S., "Asymmetric Key Packages", RFC 5958, DOI 10.17487/RFC5958, , <https://www.rfc-editor.org/info/rfc5958>.
[RFC6090]
McGrew, D., Igoe, K., and M. Salter, "Fundamental Elliptic Curve Cryptography Algorithms", RFC 6090, DOI 10.17487/RFC6090, , <https://www.rfc-editor.org/info/rfc6090>.
[RFC6234]
Eastlake 3rd, D. and T. Hansen, "US Secure Hash Algorithms (SHA and SHA-based HMAC and HKDF)", RFC 6234, DOI 10.17487/RFC6234, , <https://www.rfc-editor.org/info/rfc6234>.
[RFC7748]
Langley, A., Hamburg, M., and S. Turner, "Elliptic Curves for Security", RFC 7748, DOI 10.17487/RFC7748, , <https://www.rfc-editor.org/info/rfc7748>.
[RFC8032]
Josefsson, S. and I. Liusvaara, "Edwards-Curve Digital Signature Algorithm (EdDSA)", RFC 8032, DOI 10.17487/RFC8032, , <https://www.rfc-editor.org/info/rfc8032>.
[RFC8174]
Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174, , <https://www.rfc-editor.org/info/rfc8174>.
[RFC8410]
Josefsson, S. and J. Schaad, "Algorithm Identifiers for Ed25519, Ed448, X25519, and X448 for Use in the Internet X.509 Public Key Infrastructure", RFC 8410, DOI 10.17487/RFC8410, , <https://www.rfc-editor.org/info/rfc8410>.
[RFC8411]
Schaad, J. and R. Andrews, "IANA Registration for the Cryptographic Algorithm Object Identifier Range", RFC 8411, DOI 10.17487/RFC8411, , <https://www.rfc-editor.org/info/rfc8411>.
[X.690]
ITU-T, "Information technology - ASN.1 encoding Rules: Specification of Basic Encoding Rules (BER), Canonical Encoding Rules (CER) and Distinguished Encoding Rules (DER)", ISO/IEC 8825-1:2015, .

12.2. Informative References

[ANSSI2024]
French Cybersecurity Agency (ANSSI), Federal Office for Information Security (BSI), Netherlands National Communications Security Agency (NLNCSA), and Swedish National Communications Security Authority, Swedish Armed Forces, "Position Paper on Quantum Key Distribution", n.d., <https://cyber.gouv.fr/sites/default/files/document/Quantum_Key_Distribution_Position_Paper.pdf>.
[Bindel2017]
Bindel, N., Herath, U., McKague, M., and D. Stebila, "Transitioning to a quantum-resistant public key infrastructure", , <https://link.springer.com/chapter/10.1007/978-3-319-59879-6_22>.
[BSI2021]
Federal Office for Information Security (BSI), "Quantum-safe cryptography - fundamentals, current developments and recommendations", , <https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/Brochure/quantum-safe-cryptography.pdf>.
[I-D.becker-guthrie-noncomposite-hybrid-auth]
Becker, A., Guthrie, R., and M. J. Jenkins, "Non-Composite Hybrid Authentication in PKIX and Applications to Internet Protocols", Work in Progress, Internet-Draft, draft-becker-guthrie-noncomposite-hybrid-auth-00, , <https://datatracker.ietf.org/doc/html/draft-becker-guthrie-noncomposite-hybrid-auth-00>.
[I-D.driscoll-pqt-hybrid-terminology]
D, F., "Terminology for Post-Quantum Traditional Hybrid Schemes", Work in Progress, Internet-Draft, draft-driscoll-pqt-hybrid-terminology-01, , <https://datatracker.ietf.org/doc/html/draft-driscoll-pqt-hybrid-terminology-01>.
[I-D.guthrie-ipsecme-ikev2-hybrid-auth]
Guthrie, R., "Hybrid Non-Composite Authentication in IKEv2", Work in Progress, Internet-Draft, draft-guthrie-ipsecme-ikev2-hybrid-auth-00, , <https://datatracker.ietf.org/doc/html/draft-guthrie-ipsecme-ikev2-hybrid-auth-00>.
[I-D.hale-pquip-hybrid-signature-spectrums]
Bindel, N., Hale, B., Connolly, D., and F. D, "Hybrid signature spectrums", Work in Progress, Internet-Draft, draft-hale-pquip-hybrid-signature-spectrums-01, , <https://datatracker.ietf.org/doc/html/draft-hale-pquip-hybrid-signature-spectrums-01>.
[I-D.ietf-lamps-dilithium-certificates]
Massimo, J., Kampanakis, P., Turner, S., and B. Westerbaan, "Internet X.509 Public Key Infrastructure: Algorithm Identifiers for Dilithium", Work in Progress, Internet-Draft, draft-ietf-lamps-dilithium-certificates-01, , <https://datatracker.ietf.org/doc/html/draft-ietf-lamps-dilithium-certificates-01>.
[I-D.massimo-lamps-pq-sig-certificates]
Massimo, J., Kampanakis, P., Turner, S., and B. Westerbaan, "Algorithms and Identifiers for Post-Quantum Algorithms", Work in Progress, Internet-Draft, draft-massimo-lamps-pq-sig-certificates-00, , <https://datatracker.ietf.org/doc/html/draft-massimo-lamps-pq-sig-certificates-00>.
[I-D.ounsworth-pq-composite-kem]
Ounsworth, M. and J. Gray, "Composite KEM For Use In Internet PKI", Work in Progress, Internet-Draft, draft-ounsworth-pq-composite-kem-01, , <https://datatracker.ietf.org/doc/html/draft-ounsworth-pq-composite-kem-01>.
[I-D.pala-klaussner-composite-kofn]
Pala, M. and J. Klaußner, "K-threshold Composite Signatures for the Internet PKI", Work in Progress, Internet-Draft, draft-pala-klaussner-composite-kofn-00, , <https://datatracker.ietf.org/doc/html/draft-pala-klaussner-composite-kofn-00>.
[I-D.vaira-pquip-pqc-use-cases]
Vaira, A., Brockhaus, H., Railean, A., Gray, J., and M. Ounsworth, "Post-quantum cryptography use cases", Work in Progress, Internet-Draft, draft-vaira-pquip-pqc-use-cases-00, , <https://datatracker.ietf.org/doc/html/draft-vaira-pquip-pqc-use-cases-00>.
[RFC3279]
Bassham, L., Polk, W., and R. Housley, "Algorithms and Identifiers for the Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile", RFC 3279, DOI 10.17487/RFC3279, , <https://www.rfc-editor.org/info/rfc3279>.
[RFC7292]
Moriarty, K., Ed., Nystrom, M., Parkinson, S., Rusch, A., and M. Scott, "PKCS #12: Personal Information Exchange Syntax v1.1", RFC 7292, DOI 10.17487/RFC7292, , <https://www.rfc-editor.org/info/rfc7292>.
[RFC7296]
Kaufman, C., Hoffman, P., Nir, Y., Eronen, P., and T. Kivinen, "Internet Key Exchange Protocol Version 2 (IKEv2)", STD 79, RFC 7296, DOI 10.17487/RFC7296, , <https://www.rfc-editor.org/info/rfc7296>.
[RFC7299]
Housley, R., "Object Identifier Registry for the PKIX Working Group", RFC 7299, DOI 10.17487/RFC7299, , <https://www.rfc-editor.org/info/rfc7299>.
[RFC8017]
Moriarty, K., Ed., Kaliski, B., Jonsson, J., and A. Rusch, "PKCS #1: RSA Cryptography Specifications Version 2.2", RFC 8017, DOI 10.17487/RFC8017, , <https://www.rfc-editor.org/info/rfc8017>.
[RFC8446]
Rescorla, E., "The Transport Layer Security (TLS) Protocol Version 1.3", RFC 8446, DOI 10.17487/RFC8446, , <https://www.rfc-editor.org/info/rfc8446>.
[RFC8551]
Schaad, J., Ramsdell, B., and S. Turner, "Secure/Multipurpose Internet Mail Extensions (S/MIME) Version 4.0 Message Specification", RFC 8551, DOI 10.17487/RFC8551, , <https://www.rfc-editor.org/info/rfc8551>.

Appendix A. Component Algorithm Reference

This section provides references to the full specification of the algorithms used in the composite constructions.

Table 7: Component Signature Algorithms used in Composite Constructions
Component Signature Algorithm ID OID Specification
id-ML-DSA-44 1.3.6.1.4.1.2.267.12.4.4 ML-DSA: [I-D.ietf-lamps-dilithium-certificates] and [FIPS.204-ipd]
id-ML-DSA-65 1.3.6.1.4.1.2.267.12.6.5 ML-DSA: [I-D.ietf-lamps-dilithium-certificates] and [FIPS.204-ipd]
id-ML-DSA-87 1.3.6.1.4.1.2.267.12.8.7 ML-DSA: [I-D.ietf-lamps-dilithium-certificates] and [FIPS.204-ipd]
id-Ed25519 iso(1) identified-organization(3) thawte(101) 112 Ed25519 / Ed448: [RFC8410]
id-Ed448 iso(1) identified-organization(3) thawte(101) id-Ed448(113) Ed25519 / Ed448: [RFC8410]
ecdsa-with-SHA256 iso(1) member-body(2) us(840) ansi-X9-62(10045) signatures(4) ecdsa-with-SHA2(3) 2 ECDSA: [RFC5758]
ecdsa-with-SHA512 iso(1) member-body(2) us(840) ansi-X9-62(10045) signatures(4) ecdsa-with-SHA2(3) 4 ECDSA: [RFC5758]
sha256WithRSAEncryption iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-1(1) 11 RSAES-PKCS-v1_5: [RFC8017]
sha512WithRSAEncryption iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-1(1) 13 RSAES-PKCS-v1_5: [RFC8017]
id-RSASA-PSS iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-1(1) 10 RSASSA-PSS: [RFC8017]
Table 8: Elliptic Curves used in Composite Constructions
Elliptic CurveID OID Specification
secp256r1 iso(1) member-body(2) us(840) ansi-x962(10045) curves(3) prime(1) 7 [RFC6090]
secp384r1 iso(1) identified-organization(3) certicom(132) curve(0) 34 [RFC6090]
brainpoolP256r1 iso(1) identified-organization(3) teletrust(36) algorithm(3) signatureAlgorithm(3) ecSign(2) ecStdCurvesAndGeneration(8) ellipticCurve(1) versionOne(1) 7 [RFC5639]
brainpoolP384r1 iso(1) identified-organization(3) teletrust(36) algorithm(3) signatureAlgorithm(3) ecSign(2) ecStdCurvesAndGeneration(8) ellipticCurve(1) versionOne(1) 11 [RFC5639]
Table 9: Hash algorithms used in Composite Constructions
HashID OID Specification
id-sha256 joint-iso-itu-t(2) country(16) us(840) organization(1) gov(101) csor(3) nistAlgorithms(4) hashAlgs(2) 1 [RFC6234]
id-sha512 joint-iso-itu-t(2) country(16) us(840) organization(1) gov(101) csor(3) nistAlgorithms(4) hashAlgs(2) 3 [RFC6234]

Appendix B. Samples

B.1. Explicit Composite Signature Examples

B.1.1. MLDSA44-ECDSA-P256-SHA256 Public Key

-----BEGIN PUBLIC KEY-----
MIIFgTANBgtghkgBhvprUAgBBAOCBW4AMIIFaQOCBSEAJaSzbEOXCT27FgXshv87
2HLTgePmYCJCH2OVUi/PB9YTyBXXnw+smoXT4w0pcq3WPs7qQXz6GKj7R0mFfTjp
Rd6uH3hgdS5cbg+PwMWsRKigE6mWFpMwrliS8CfR2yYgjhRav7wGa4ja7RdmZoLz
T8UBN2Yg6P/KceWA1gX6rdVUalrUvmcfR64ry06IfotXXNFwQc3vI6s7khHSUZX5
Rsw55RK3E0ElNpZxfFHv17d2xwFkGRAYqJao+qo37WtfG6Ynx4cqQyLJzlRn++5R
G6K1nCwqhErpk4vDR2uHIwAPiW0StX9ZbBjO2smRTIuWS2WhmhZwJkDqSHmCiRI2
tPsxCtLpM8t2IhTVy/ObAdQGPDngTNIPH8kuoRrBhWGIiWJMlo8LkImCRt5m/8Di
aL8C2BQNL+BWBBcak/JZrLkKZOZM7pFwWruHVEd0608XerfiVO3ypqAxImJ2xcdD
kLys4jDlEMsC3oz4RQGXahj2Pr8Jxu8i0TIDDdV5MZw9wId/m+0/vSD8BOAu09Wu
V6ppUWkDZLHlzf12zx3ZzBF/CMqZNsxMdTFNbu2qQ2/CZMlEvZ9f0gxn6qNf8NHC
UqdeRr7p9z8PuGHErLHqCvQMrzia71cD4URV//SR8EUQkoo9imtw3XT2uKGUIjT/
dDyqWl8BlAZ64dUp9EWmHwG1cyKBcu2dtD0d4BMol1g4TOF7u/3hHcgOoiR+ON/3
7MoxkX9mHt6tP7hkVWy0Mb3Sjej12DG75D9z8gAzHyQhOs3suNliCzCUmUVYm5Mv
WdySiuShm6yu+9Ah+GqvESuNr/h6s1gZGbdCe9llGdFPniilhL5J9oDgYMp+wi2I
EeOugOFoaY1e2OI1OPjBpg1071ko9B3CGD+0PkPvKYmMGs0HTnzFWCLPj5dG2kg7
PEltarKvLVTIxrbjw03l3SXmqpNPU8SqFJ7hB3OpFJgjqL95IRTa68UM8aaUKLMa
Qjjx08+e13P3wwY3niCR5U751fus4ArGLN2JgfPB7bPSdz043PIvxsCYZxUQXSW3
xWhWQqaHJLml19obvnf/tEXQZLheAr7hOEb/UTNUIBj/A6LfB0Gs012B1aXfne4W
9K/OFXc9p0C7aWIfjfMrA/idOrd1Eoo2NGLid+wp8aXyDZkCf5OUretEFHqQcQ2J
znh8R4mh2Tf7hT8+Gj5Su6bZggHi9iIJZ1G7i0j4Wm3g6DJAXF6KbChMayKRunDp
k6Nm5iOeTmT+Vi4OJncuI6HezZMzO2s+2iY33uDL7tFR8fVn7dQiF78c1aNhWjfm
fIsLNQdZxt6orvnwSrZpdVhOtAu+vYVaEAShdHgfzvPSDHIjgyxs6mGdk0uDsGpP
f5d3e9KV40rXir2OXaYMOq2KTkLb6KHHxZayLG0D9/qSBOnSE/aXNhh1cHtKeYAe
jjXmfzsmgNELPNxFRrx8pEHG1Se0GJNJVZE9u6B2r9f09TgTxgPX/6XpBNUrlz21
fsIvNpRL48cwLHOCgYP/SAgE3gzRC6G5NEE19wQZHsFNGeUeGvrvUQgTyT1YwLx+
Abvp57bVjgLWli185/K1a8BmJ204RHfDhSFe7sVAIoI2pUcz7ydb178DCAvupP20
CxUIkgOk3C+cgUzTwsFU4iiix282ZBa8/nTUnH9r3IDJQJwdWtMCnByCc43UeVSh
WV3isRF+ANl6lSevNj0uzGE07a5gPahctBWMmevh6qFcv5XucwNRe7en96o7CgK+
5QNCAAReie6V/SXhsV0+AAEPt/7UjJqzbrZU1ZHKBLCDbX1cv1Zkpy+SabE2Pfpd
K7SzfBpZw0txE+bjIUT4j3zjgIDa
-----END PUBLIC KEY-----

B.1.2. MLDSA44-ECDSA-P256 Private Key

-----BEGIN PRIVATE KEY-----
MIIP6gIBADANBgtghkgBhvprUAgBBASCD9Qwgg/QMIIPNgIBADANBgsrBgEEAQKC
CwwEBASCDyAlpLNsQ5cJPbsWBeyG/zvYctOB4+ZgIkIfY5VSL88H1oyY3xD+KvF2
4bnFPT7nM4+8rPjsCuuk2PyUr7vzEHf++3ovDEFUsHo88ez4zfzBeW+Aho6yC4Gf
H8BFsgVYv0HmRUPUEmVhrJUKt8VwHbOVyak7a4JWl6MWpwxnRYqso1rCcWKWZKQC
bZIQQhGIKaIyZQSVRSI4bdBAShuBaQPGkBwUDgM3QQgGbhHDSBqzLQk4MooWSUk0
Zhk4JCAgUhg0ZVkkECOYTYBIMRQGjFICSaMiIYAAShMTJVAwbaFCakg0QcFCZolC
CmBEUQm5cQESASEQDCSgRGAyhMQGDWOAKRkZZESiAOI0KWAWbaIkbBoUJWOiiQk5
hhBCadqGhZEYglhIQACkMJo4kmEwSIDGBYtELcCoAVuGJMPAhCOFDRE1RCSGLAq0
AAA1Cgk3CgjAZYEUKovCaBs5hti2CZO0DePECBvHZASnMdmmURsxRFA4YRxGUOSy
EeEyUIA2isM0LRwJAgEAjGHGLRySJYjAgROBYQO1UUSCSRjACdg0ZAGgABQHjAkm
juOUQBpEgNy0jOPGIAzETdyIhZMIMVRCZgyyRUAgLQQwcchIbFIWRswgIQHAJQMV
RJgQJFqERFuiJQqjBIsChVpEMEsCKFqwCFgkciRHIcwCICKUAEgWScTESdgiYWQy
MtCgIISkARMZRAg3ieMGKlBITMM2iosCgiQ2MIKiKeI2TFhGaQKWAckEJmE4hhII
bSEyjQuECMlASBTBJFlIahIHaRhAAeQoMRQSDhQCcsiwYYg4BiETCAwiMRwwEcyU
jAoBDgLDDJmCjZOwRECIkVQ0bdoiKgwmUlSoSFsASsOoIQNHAdSwLFG4aSMIChlB
YBmmUEK0RIA4LiEmIAREJJEkIlpCJAnJDBS5bZQ2QAI2juHIKMkyihOnARlDiSQG
KEJAkgijEQwZRkgCJqFIiqIWRRo5JNqCTQoXhNIihko2YCICRQvIhQuALVmIhUAQ
TlRCasFAJJAQISG0ZQgTYgk0bEIiKZG0BYikBSEUYovCCBgZCgTJJNwoSFwIaMEC
JBm0cUQQSMpALAKwDKEkZSOCIFySQWAAYAGYLcw4IVPIMQiYaBoijduAMVrAjCQl
hdowJhpHKCCIKEMmbeEghRKiRRmgZAHAZRRDMclGICGEZKO0ReM2EFgwFoabywZ8
xF2nuUHyMuPJG+EpYRxQCAJaxByDrIGke83F1KvEG5cCOPOXhi2O7cC4sxSopILK
I5bRDIFdHk15n9mCLq6w/K72nQSX4usU4izDewR/JZQZV6AR9D/yBSNyAfr50Z7U
pMrfq7NZp+KstrHxs0SBDm5XNBXBaIpAwIHKkL/epe+2q2FI4Dcy1rZAQMVX80UI
SmhaL1CRud4Yi1pEnPf0taOiaE8hjgQwoZ1DUl6HviFsJwaa2+y3RAjsGZuIVRTC
3nirZrYPw+dWVFWvMqvjh97SYgC7eTn2R4Xu3f/2GVaiaXgCEBhHTY5Ar8Fz6E3L
MVi9hWMMF6Mj5vXcdUhwA2aeXGjnqPdtA/jmZUXQlK3NmxS4v2ga0z7wFRiv2nNF
bnEGP6T/8oTcd78NrWobcQHfV3uWbbSwOhPrNgBWzuMl/FG9nMLRcQ8OZzjwxPgV
PGnW0tm/g2iAG30HtuagQP7OTpibqBurtEE+liVSFgoD0or4zYhPk3mz+OMVm5/4
1DdLLTRtnq7XVTVziy2JpTJVBeF8VDh5G9gQj8iFhXCNfj5ZFNfmjaHCE2oVefc4
FYVEr4MuoPq0bFmsbAlZMJYJ3d/zvoIx0Wj5IMGUrFNTl2fWzQyc75QMRcdKi2e0
YUcsFd6aWaHx/dhSid5PwXNryS8hsB4Uf2o2hvn5VXdUD7b9ZhDHvZy9l/RaRZWr
ih6pwSQ6HE0o6RcZJaAl2rG5i/TCkQN8Z+hOl6rxVSS0UesvhntrVEgo8hXVTnSi
3FRfWG/AWvDPe/GNRiDCRBBS2S2cNvJrNtpgzxXUh+8oPrOTylDQbn1fXd9wCCey
bdUj4cHvYJra/XmXOUws+qcUF5wa7aXRm8suk/nrvVws+lOU48C4fvsit1rQbbqG
0SJsasIpu4x0020zpxFm10TO619yAIeBY0VYDr28dckjJlr5latUFgZY5LcS4IHl
pxgZa6lA/UcAxgnnc04PWL58ErsZjGH2UL5TF2B1AVLRXVk1g4toM08vMpCWMucy
nvHIPfxBNT9Io2sVfnf5HL6OjCVaFM0evKQ00lyrRx/ASfkjJKl0Vz8da01ZmaCF
jUfB2pMVvqJvogflrKwOzjsPbAQbBdTG54dd2vSdCSdxHTcHf6MyxS0xrPIUBRjR
irUPU2ZzbTa/M5qfSMEsv6GMLDjtbn00ckBhq7Xc8ecHXmhPWP4PIC36deXorFVS
4sEcWbXQmNTJyYG0ex3Id9e+KZyKGwQm0Ts49sH8GCEd4VNJ48WdI/YrNBmz67RQ
HN0GIxOufDGiFxFrWjN7gOk0V75G2sLv6piA4N+2suvHYVyl0E7FGhUzTtDxhnAi
VAGNqFaYgp/UnpbLy6FuRQFop/6QT5nKB0v0LSwwdjKCFPXbCK34ybuTgV5RHCQJ
58CIyxcciGn7j0CIOZdT9F4zW4zIdjPvEcGQVWQtseknxA8DUoY9y0XIqDhFRd0y
1Q/4ynNFriItA83Q9XJk+DBrErRaXAcAc1Ti5jkNznyR5IGiHaliPIVhrYisVicm
+J1W93tf/4PgxEmB3aRPQPQK5xysT3Vh74bwXfIKRwQ4VLFPoSWuMh3hVtHB1dr6
NY3jELf5DXg2GYJ9cnfOiGhCNmVBb9KI/aCWPxg45wZpwI3DtS7ueia/qBDY5N+0
UDDdUkW6EP1pkdvhBHyhAHTUdS6P/V00O0PolSWwCNwXP/x5xmiz6yvy3YHg9b8H
4e+5HP3Fc6Q6jTRnZSB8BJVcLbhMIKDf3KP1iGdz7wKfAfgl/lJWkm+N9lv8196U
9208fbv6HttjU3zOxH2oOVaptDOGdA024TciOR/FS/nL+q4zh8lDcRFo4sKPUNQt
wYwDTJGMdxQ0aGhOIOEaDJ70HHvhq74hwwfn7DSimqGJvEub2kKkDPjuQwv/+P1R
4jV18QffWlQZMVa+OdOSYU2pI05XfGCapCHv3ZoD/orpNCEV0auMa1vKdQObOBOS
/6TIcVojw3tHKqtqSDYUjihFEeFYq3vLrfe9C/DAapim9M5P8ZlyndCJrXgr2Kg0
RnkoXJ7kTGK7cyzdudhaS+b5JaJOf3tsC64XMh3o0s9OdMwKqhbLIpGuWYOeiqm9
pRdaSPpc+NtzWTLIyVPlm22mGwpnjkkilwpFj3qtd1G1yYlGThn4/BvcOAA+qCH2
2+yeL1MzdTXVVTYy/nbux7WwZ5RXJmJOJaSzbEOXCT27FgXshv872HLTgePmYCJC
H2OVUi/PB9YTyBXXnw+smoXT4w0pcq3WPs7qQXz6GKj7R0mFfTjpRd6uH3hgdS5c
bg+PwMWsRKigE6mWFpMwrliS8CfR2yYgjhRav7wGa4ja7RdmZoLzT8UBN2Yg6P/K
ceWA1gX6rdVUalrUvmcfR64ry06IfotXXNFwQc3vI6s7khHSUZX5Rsw55RK3E0El
NpZxfFHv17d2xwFkGRAYqJao+qo37WtfG6Ynx4cqQyLJzlRn++5RG6K1nCwqhErp
k4vDR2uHIwAPiW0StX9ZbBjO2smRTIuWS2WhmhZwJkDqSHmCiRI2tPsxCtLpM8t2
IhTVy/ObAdQGPDngTNIPH8kuoRrBhWGIiWJMlo8LkImCRt5m/8DiaL8C2BQNL+BW
BBcak/JZrLkKZOZM7pFwWruHVEd0608XerfiVO3ypqAxImJ2xcdDkLys4jDlEMsC
3oz4RQGXahj2Pr8Jxu8i0TIDDdV5MZw9wId/m+0/vSD8BOAu09WuV6ppUWkDZLHl
zf12zx3ZzBF/CMqZNsxMdTFNbu2qQ2/CZMlEvZ9f0gxn6qNf8NHCUqdeRr7p9z8P
uGHErLHqCvQMrzia71cD4URV//SR8EUQkoo9imtw3XT2uKGUIjT/dDyqWl8BlAZ6
4dUp9EWmHwG1cyKBcu2dtD0d4BMol1g4TOF7u/3hHcgOoiR+ON/37MoxkX9mHt6t
P7hkVWy0Mb3Sjej12DG75D9z8gAzHyQhOs3suNliCzCUmUVYm5MvWdySiuShm6yu
+9Ah+GqvESuNr/h6s1gZGbdCe9llGdFPniilhL5J9oDgYMp+wi2IEeOugOFoaY1e
2OI1OPjBpg1071ko9B3CGD+0PkPvKYmMGs0HTnzFWCLPj5dG2kg7PEltarKvLVTI
xrbjw03l3SXmqpNPU8SqFJ7hB3OpFJgjqL95IRTa68UM8aaUKLMaQjjx08+e13P3
wwY3niCR5U751fus4ArGLN2JgfPB7bPSdz043PIvxsCYZxUQXSW3xWhWQqaHJLml
19obvnf/tEXQZLheAr7hOEb/UTNUIBj/A6LfB0Gs012B1aXfne4W9K/OFXc9p0C7
aWIfjfMrA/idOrd1Eoo2NGLid+wp8aXyDZkCf5OUretEFHqQcQ2Jznh8R4mh2Tf7
hT8+Gj5Su6bZggHi9iIJZ1G7i0j4Wm3g6DJAXF6KbChMayKRunDpk6Nm5iOeTmT+
Vi4OJncuI6HezZMzO2s+2iY33uDL7tFR8fVn7dQiF78c1aNhWjfmfIsLNQdZxt6o
rvnwSrZpdVhOtAu+vYVaEAShdHgfzvPSDHIjgyxs6mGdk0uDsGpPf5d3e9KV40rX
ir2OXaYMOq2KTkLb6KHHxZayLG0D9/qSBOnSE/aXNhh1cHtKeYAejjXmfzsmgNEL
PNxFRrx8pEHG1Se0GJNJVZE9u6B2r9f09TgTxgPX/6XpBNUrlz21fsIvNpRL48cw
LHOCgYP/SAgE3gzRC6G5NEE19wQZHsFNGeUeGvrvUQgTyT1YwLx+Abvp57bVjgLW
li185/K1a8BmJ204RHfDhSFe7sVAIoI2pUcz7ydb178DCAvupP20CxUIkgOk3C+c
gUzTwsFU4iiix282ZBa8/nTUnH9r3IDJQJwdWtMCnByCc43UeVShWV3isRF+ANl6
lSevNj0uzGE07a5gPahctBWMmevh6qFcv5XucwNRe7en96o7CgK+5TCBkwIBADAT
BgcqhkjOPQIBBggqhkjOPQMBBwR5MHcCAQEEIGS03QxzabfR/cKWFDEkvue30guK
RrdY2Lm6isBSMZfZoAoGCCqGSM49AwEHoUQDQgAEXonulf0l4bFdPgABD7f+1Iya
s262VNWRygSwg219XL9WZKcvkmmxNj36XSu0s3waWcNLcRPm4yFE+I9844CA2g==
-----END PRIVATE KEY-----

B.1.3. MLDSA44-ECDSA-P256 Self-Signed X509 Certificate

-----BEGIN CERTIFICATE-----
MIIP+TCCBhqgAwIBAgIUEsa5EwG0Ligbb3NMHEmsqr0IoKMwDQYLYIZIAYb6a1AI
AQQwEjEQMA4GA1UEAwwHb3FzdGVzdDAeFw0yNDAzMDEyMzE5MzFaFw0yNTAzMDEy
MzE5MzFaMBIxEDAOBgNVBAMMB29xc3Rlc3QwggWBMA0GC2CGSAGG+mtQCAEEA4IF
bgAwggVpA4IFIQAlpLNsQ5cJPbsWBeyG/zvYctOB4+ZgIkIfY5VSL88H1hPIFdef
D6yahdPjDSlyrdY+zupBfPoYqPtHSYV9OOlF3q4feGB1LlxuD4/AxaxEqKATqZYW
kzCuWJLwJ9HbJiCOFFq/vAZriNrtF2ZmgvNPxQE3ZiDo/8px5YDWBfqt1VRqWtS+
Zx9HrivLToh+i1dc0XBBze8jqzuSEdJRlflGzDnlErcTQSU2lnF8Ue/Xt3bHAWQZ
EBiolqj6qjfta18bpifHhypDIsnOVGf77lEborWcLCqESumTi8NHa4cjAA+JbRK1
f1lsGM7ayZFMi5ZLZaGaFnAmQOpIeYKJEja0+zEK0ukzy3YiFNXL85sB1AY8OeBM
0g8fyS6hGsGFYYiJYkyWjwuQiYJG3mb/wOJovwLYFA0v4FYEFxqT8lmsuQpk5kzu
kXBau4dUR3TrTxd6t+JU7fKmoDEiYnbFx0OQvKziMOUQywLejPhFAZdqGPY+vwnG
7yLRMgMN1XkxnD3Ah3+b7T+9IPwE4C7T1a5XqmlRaQNkseXN/XbPHdnMEX8Iypk2
zEx1MU1u7apDb8JkyUS9n1/SDGfqo1/w0cJSp15Gvun3Pw+4YcSsseoK9AyvOJrv
VwPhRFX/9JHwRRCSij2Ka3DddPa4oZQiNP90PKpaXwGUBnrh1Sn0RaYfAbVzIoFy
7Z20PR3gEyiXWDhM4Xu7/eEdyA6iJH443/fsyjGRf2Ye3q0/uGRVbLQxvdKN6PXY
MbvkP3PyADMfJCE6zey42WILMJSZRVibky9Z3JKK5KGbrK770CH4aq8RK42v+Hqz
WBkZt0J72WUZ0U+eKKWEvkn2gOBgyn7CLYgR466A4WhpjV7Y4jU4+MGmDXTvWSj0
HcIYP7Q+Q+8piYwazQdOfMVYIs+Pl0baSDs8SW1qsq8tVMjGtuPDTeXdJeaqk09T
xKoUnuEHc6kUmCOov3khFNrrxQzxppQosxpCOPHTz57Xc/fDBjeeIJHlTvnV+6zg
CsYs3YmB88Hts9J3PTjc8i/GwJhnFRBdJbfFaFZCpockuaXX2hu+d/+0RdBkuF4C
vuE4Rv9RM1QgGP8Dot8HQazTXYHVpd+d7hb0r84Vdz2nQLtpYh+N8ysD+J06t3US
ijY0YuJ37CnxpfINmQJ/k5St60QUepBxDYnOeHxHiaHZN/uFPz4aPlK7ptmCAeL2
IglnUbuLSPhabeDoMkBcXopsKExrIpG6cOmTo2bmI55OZP5WLg4mdy4jod7NkzM7
az7aJjfe4Mvu0VHx9Wft1CIXvxzVo2FaN+Z8iws1B1nG3qiu+fBKtml1WE60C769
hVoQBKF0eB/O89IMciODLGzqYZ2TS4Owak9/l3d70pXjSteKvY5dpgw6rYpOQtvo
ocfFlrIsbQP3+pIE6dIT9pc2GHVwe0p5gB6ONeZ/OyaA0Qs83EVGvHykQcbVJ7QY
k0lVkT27oHav1/T1OBPGA9f/pekE1SuXPbV+wi82lEvjxzAsc4KBg/9ICATeDNEL
obk0QTX3BBkewU0Z5R4a+u9RCBPJPVjAvH4Bu+nnttWOAtaWLXzn8rVrwGYnbThE
d8OFIV7uxUAigjalRzPvJ1vXvwMIC+6k/bQLFQiSA6TcL5yBTNPCwVTiKKLHbzZk
Frz+dNScf2vcgMlAnB1a0wKcHIJzjdR5VKFZXeKxEX4A2XqVJ682PS7MYTTtrmA9
qFy0FYyZ6+HqoVy/le5zA1F7t6f3qjsKAr7lA0IABF6J7pX9JeGxXT4AAQ+3/tSM
mrNutlTVkcoEsINtfVy/VmSnL5JpsTY9+l0rtLN8GlnDS3ET5uMhRPiPfOOAgNqj
ITAfMB0GA1UdDgQWBBR72ZiceTDE3NvBPY4ryxmGCVY5pjANBgtghkgBhvprUAgB
BAOCCcgAMIIJwwOCCXUAQZt6/8sreFucKJFrqjKF21L5S9zuNhAA7Klvuqd0/4R3
3efTQ52tdQg345qqpW0BZRlgUDSWnq1Bmu3dyjcGDHY8LLvHyoOyTe02AMgwTW2c
UH6XpqeaGu1cab6l0owF2m5yGV9EmKYC8fky4JhEk2As83l2xlc4mVbA09NKfvQs
p94zzodQdCYFJ5VY62OubFsy3m6rlzaRCvJ+GLfpp1UeU0vxgqjIrPC3bDnId+gH
Wpkq+3lZLP/duGxYeXeeOm4zaQuaIUCJ0e/mFCFpbHywwgncay+0OQFDTFRYhNDY
ZlJR3AWLF47Grn/MhOEj5VO4GJvj+CjlGlOe3Fn6ABEjdRSDUOYykGg3NtnLIGkf
hM8j4hd+jfqGKwZrPNz/YaNC4YtKX1uwbjv1gGZSQ7I6zBPw37r1yblTAielXtPE
l1DuoFr3f05gzJJF6OuG6s7iBoUc5n1ovrn3UO85nCbSqqO2Ky15xsqTkFPnz4+g
JUOZ0SkqznulXIaMtJf/SmF4Pn23fmjqpOBTqOkBAOjloQIgSiQ90z45JU8Cy5sM
COU5d6shh9oM1BMIhFco9Zgxc/VF3WWd7ig9NT120HO6seAtMEMMSjtEUJsqWyQI
NnQvNVCTdG9joftmHnn5Uczar6HLr1HNYvjjXVudrp6ziKTFgblklGdcrqN0OTtx
hNSyacxucS5DWm5RGicRQaWb8Khob1lSn9nAZC0rOaChzjzJ0F5FYH2j3vL4ztLa
D5LMT+0FV5q0gkDHcowdQmWBiSwgyvJm+SMUmT/jyDPyf1VR71i1R3jeVqTu+kaw
ZkUpBztGzMLuPUrTlFeWa+QitEQegzObUw3zSRYaOpKa+Xz49zSLEEK5mOpKIvp0
qub+LXJXPBs38CUSxh2MRCOd8t5LlQCnKOQbVOu0UHvWmEhG/Oa/3j97PC1xrLOj
KTYSDrjhmwcPkJql5zzgVC+gBHcmeUWSutlp4HYskp0WyWc2fR4rKTawH6D3TCdu
IfBtlj80CWhNrWoaC+8yN+Y8rsogv0VoeUkVbneAg7J7TuJo9poTu/RFyEJ4AkIq
XzOxpjiwyUStVY5YH3x8zgquFau7bK8RQLowC8VFFWA8BFcgAgQkmasiipREpGaZ
PxFelJbl6en0UHS1VWDF0sdadypkY+hAcVGPEOt9pcWvP0o31ioybplBLe831d1q
TtD1TfBHXNr1cFErqfwryRUhV0JYNkwKGt6IcN1sfe+j23wo/b1BRDld4z1WL45o
7nebuv499egoHN5+AHFSGxleBVWvZe0iJzXWMqfLGfEkXg92qh6+vMxQW0Dsh0lD
mJP8xaD2cXZVN8+X1H7ESD7fC8MyKgtHAzuPcNjx0Zl8wihPNz/LBc9H1o9+LyDT
wcl4Mys3XDQqeg/efLB7W7eyWcCR/TeVO1sNmFIfMOlqbA04hqao3q9PdN4LlKCR
RjDqxGMCnE6+/YZSmWbB4CyYQsy4yXHss3SNKFdO4KccUUMVRTAcvSmHs1lUOIGI
OUaFJ6yw/jp5Wjybx7G5r6v/kvnlh5V3EfdW4srrbMtiSvDrNsc6/pV4+/WJ8lDa
T++u+phJpKAPbc2t0Tly/x6/O0L+PJLMlD9qK1nGYdttvEDsKgHe4jTkMytiYQp7
VolKPsbgLA5o5esMm4YVtfPOJNiRIPa6NlVgf/enNziReTZVgWi8g/yDdcdpMuS9
Op6Hbx0gdH7vfFNjAyuSorTzrUIlJPv5ZYdVw3qj+zcWybHAeozJfPQyXS5QoJm9
7mXfmNvtH620g5qG6C9XyoP7oIul17bMiX7A0/cg06y3pxWRVw/Tmn1sn4Er3jBg
XATF5+2R/euNmggiQAlYhXshKj401wQT+pFgFruB3/U2nSuZtTrOJXp33pcCEWjx
USmitfUl0znkW2dIM4lD7RUUftJKJnSDWYeJSyM3rijlOftc5BZontZuzzeNBxgs
HX7Q26p5SOJWbSjsffCTQfxxrxNGUxl8qVdDqtAhZjw+ZnfD8LiJhHcrYERTFxW7
MjjMV7tP06XAqybmayAWCtbgJlDbZb/thROfPmmaaymiCbnDKkQK0TLGNtiZ0ijy
yd5YLlc8c1lBpxsNe4Myvd4He743kKlS8Ep5YzrIqkwPde0fA6pnpHiUxoi4wmsK
NTDOlkV9Cly5tfrRkDyfNOqLMO0pqzDXRpATUpu8xey5s+GHDmhI1K1ojybN3MKh
TTYJ9Gla+52EhetT8a5Dm1q+5fFjpOPtDhJNKhdOOMZDRDCisf+SEeGi8Wjybw7n
x3w4hQZZpDzTknq3MZbmnlilphajEPYulLAgGAHmXEPHFMOT56cJxTCj5WUqksRh
/07PXQ62wVCpgZk7IUY0v7UF+dcomp8kHaLT1KGCD1v6XgD2uySyt9ha+3MEsOjk
PhfLWKeVAYFQX8maIajcLKckHE27rzDgJ66nhJU/YmxtvRo84EGfvkkqpDxVpMl1
KWVE5U6nXSNX9KAwVr4v0Gn+Lw52WMHZAhzWDGDUE8Pkb/a4l+Wbj8xDmDZXSNqx
RT9oAI2IN2yZV0nTY+tlmGYgOMrdNMr6KhtwE6E7Q6+84Cy4xKkwY3o4ob49SSCr
WHOp1mtvqUIkvfo9nV0qm3AlCd6blZGCUtYWJVhdLUY9+YqtqvAlZWom6TW9609n
xQ2pDbUnzz3RBSWotye/JZ3Iixsv1nlgf32+0x6IGutdL7SYQ8C4LiunoJTkF+A6
U5Chd9MiPvrUXjii1eiifwlwOZUxpvS50tBXIwQTuriV3AZPS5R15nJp1t4YzGOE
QwRJtNFnAkLsZ4iTrj/zDtgR6a2r4m/vzhUkrxIdZiptMO1E21zKfUMOtddPVqNg
SF4emCWJhmaoA0fQbRmZAQxqSajNFB4XPBK729A3wtTaN2TG1vm4iXzjsJuXhDzM
52NYEv8m2RoyKTiZFEfHndtvAHrqrdV1ud5jYi0GoA9YpnrdLiuzh1ljru3hk0WP
ejLjifxq6XEHkmBlsaiJSFpDxbhwwuW2zBvsUtbyU+Y8KxUuSKmem1m2JUE+UOIv
s7eJpbVOEA31p9Jd5rYlIPpuJ0gfRwyK65Rj20DYmdGoJpBPZbc2awktnniBMyI4
P1hehYqQl5+hqavvGjM3OExPVVuQl5vA2dzm6QYMECNOWV9jgsfV5/H3EhQiJTtx
dpigxtff/QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0dKzgDSAAwRQIgTgIe913r
u9h+Hh3v0dLD71pyH3EidqMddgc0vjd7qF8CIQCNyqGxNNM4DuRCkDTWH+HdmGJ1
F2ljUsBn8vo47P9JvA==
-----END CERTIFICATE-----

Appendix C. Implementation Considerations

C.1. FIPS certification

One of the primary design goals of this specification is for the overall composite algorithm to be able to be considered FIPS-approved even when one of the component algorithms is not.

Implementors seeking FIPS certification of a composite Signature algorithm where only one of the component algorithms has been FIPS-validated or FIPS-approved should credit the FIPS-validated component algorithm with full security strength, the non-FIPS-validated component algorithm with zero security, and the overall composite should be considered at least as strong and thus FIPS-approved.

The authors wish to note that this gives composite algorithms great future utility both for future cryptographic migrations as well as bridging across jurisdictions, for example defining composite algorithms which combine FIPS cryptography with cryptography from a different national standards body.

C.2. Backwards Compatibility

The term "backwards compatibility" is used here to mean something more specific; that existing systems as they are deployed today can interoperate with the upgraded systems of the future. This draft explicitly does not provide backwards compatibility, only upgraded systems will understand the OIDs defined in this document.

If backwards compatibility is required, then additional mechanisms will be needed. Migration and interoperability concerns need to be thought about in the context of various types of protocols that make use of X.509 and PKIX with relation to digital signature objects, from online negotiated protocols such as TLS 1.3 [RFC8446] and IKEv2 [RFC7296], to non-negotiated asynchronous protocols such as S/MIME signed email [RFC8551], document signing such as in the context of the European eIDAS regulations [eIDAS2014], and publicly trusted code signing [codeSigningBRsv2.8], as well as myriad other standardized and proprietary protocols and applications that leverage CMS [RFC5652] signed structures. Composite simplifies the protocol design work because it can be implemented as a signature algorithm that fits into existing systems.

C.2.1. Hybrid Extensions (Keys and Signatures)

The use of Composite Crypto provides the possibility to process multiple algorithms without changing the logic of applications but updating the cryptographic libraries: one-time change across the whole system. However, when it is not possible to upgrade the crypto engines/libraries, it is possible to leverage X.509 extensions to encode the additional keys and signatures. When the custom extensions are not marked critical, although this approach provides the most backward-compatible approach where clients can simply ignore the post-quantum (or extra) keys and signatures, it also requires all applications to be updated for correctly processing multiple algorithms together.

Appendix D. Intellectual Property Considerations

The following IPR Disclosure relates to this draft:

https://datatracker.ietf.org/ipr/3588/

Appendix E. Contributors and Acknowledgements

This document incorporates contributions and comments from a large group of experts. The Editors would especially like to acknowledge the expertise and tireless dedication of the following people, who attended many long meetings and generated millions of bytes of electronic mail and VOIP traffic over the past few years in pursuit of this document:

Daniel Van Geest (CryptoNext), Britta Hale, Tim Hollebeek (Digicert), Panos Kampanakis (Cisco Systems), Richard Kisley (IBM), Serge Mister (Entrust), Francois Rousseau, Falko Strenzke, Felipe Ventura (Entrust), Alexander Ralien (Siemens), Jose Ignacio Escribano and Jan Oupicky

We are grateful to all, including any contributors who may have been inadvertently omitted from this list.

This document borrows text from similar documents, including those referenced below. Thanks go to the authors of those documents. "Copying always makes things easier and less error prone" - [RFC8411].

E.1. Making contributions

Additional contributions to this draft are welcome. Please see the working copy of this draft at, as well as open issues at:

https://github.com/lamps-wg/draft-composite-sigs

Authors' Addresses

Mike Ounsworth
Entrust Limited
2500 Solandt Road -- Suite 100
Ottawa, Ontario K2K 3G5
Canada
John Gray
Entrust Limited
2500 Solandt Road -- Suite 100
Ottawa, Ontario K2K 3G5
Canada
Massimiliano Pala
OpenCA Labs
New York City, New York,
United States of America
Jan Klaussner
Bundesdruckerei GmbH
Kommandantenstr. 18
10969 Berlin
Germany
Scott Fluhrer
Cisco Systems