I nt ernet Engi neering Task Force (I ETF) |. Fette

Request for Comments: 6455 Googl e, Inc.
Cat egory: Standards Track A. Mel ni kov
| SSN: 2070-1721 | sode Ltd.

Decenber 2011

The WebSocket Protoco

Abst r act

The WebSocket Protocol enables two-way comunication between a client
runni ng untrusted code in a controlled environment to a renote host
that has opted-in to comunications fromthat code. The security
nodel used for this is the origin-based security nodel commonly used
by web browsers. The protocol consists of an openi ng handshake

foll owed by basic nessage frami ng, |ayered over TCP. The goal of
this technology is to provide a mechani smfor browser-based
applications that need two-way conmuni cation with servers that does
not rely on opening nultiple HITP connections (e.g., using
XMLHt t pRequest or <iframe>s and | ong polling).

Status of This Meno
This is an Internet Standards Track docunent.

This docunment is a product of the Internet Engi neering Task Force
(ITETF). It represents the consensus of the I ETF comunity. |t has
recei ved public review and has been approved for publication by the
I nternet Engineering Steering Goup (IESG. Further information on
Internet Standards is available in Section 2 of RFC 5741.

I nformation about the current status of this docunent, any errata,
and how to provide feedback on it nmay be obtai ned at
http://ww. rfc-editor.org/infol/rfc6455

Copyright Notice

Copyright (c) 2011 I ETF Trust and the persons identified as the
docunent authors. Al rights reserved.

This docunent is subject to BCP 78 and the | ETF Trust’'s Lega
Provisions Relating to | ETF Docunents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this docunent. Please review these docunents
carefully, as they describe your rights and restrictions with respect
to this docunent. Code Conponents extracted fromthis docunent nust

Fette & Mel ni kov St andards Track [Page 1]

RFC 6455 The WebSocket Prot ocol Decenber 2011

include Sinplified BSD License text as described in Section 4.e of

the Trust Legal Provisions and are provided wi thout warranty as

described in the Sinplified BSD License.

Tabl e of Contents

1.

PRPPRPRPRRERERE

N

s

NNNNNPANPEHARININNOARONEDSWORANE

agoaoaan

aoo

I ntroduction .

1 Background .

2 Prot ocol Overview

3 Openi ng Handshake

4. dosing Handshake

5. Design Phil osophy

6 Security Mdel . .

7 Rel ationship to TCP and HTTP

8 Establ i shing a Connection . .

9. Subprotocols Using the V\ébSocket Pr ot ocol
Conf or mance Requirenents . S

.1. Ternminology and O her Conventl ons

WebSocket URIs . .

Openi ng Handshake

dient Requirenents

Server-Si de Requirenments . .
.1. Reading the dient’s Openl ng Handshake .
.2. Sending the Server’s Openi ng Handshake .

NN

Supporting Miultiple Versions of WbSocket Protocol
taFramng...................
Overvi ew .
Base Frani ng Prot ocol
dient-to-Server Msking .
Fragnent ati on .o
Control Franes .
.1. dose
.2. Ping .
.3. Pong .
Dat a Franes
Exanples . . .
Extensibility .
end| ng and Recei ving Data .
Sendi ng Data .
Recei ving Data .
osi ng the Connection .
Definitions . . .
Cl ose the WebSocket Oonnectl on .o
Start the WebSocket C osing Handshake .
The WebSocket C osing Handshake is Started .
The WebSocket Connection is C osed .
The WebSocket Connection d ose Code

o1 o1 o

il
ghwNE

Col | ected ABNF for New Header Fields Used in i—laﬁdshake

CoOoouh~Db

10

11
12
12
13
14
14
14
20
21
22

26
27
27
28
32
33

36
37
37

38
39

39
40
41
41
41
42
42
42
42

Fette & Mel ni kov St andards Track [Page 2]

43
43
44
44
44
44
45
45
45
47
48
48
48
48
50
50
50
50
51
52
53
53
53
54
54
54
54
55
56
57
57
58
58
59
60
61
61
62
64
65
66
66
67
68
68
69

RFC 6455 The WebSocket Protocol Decenber 2011
7.1.6. The WebSocket Connection C ose Reason
7.1.7. Fail the WbSocket Connection

7.2. Abnormal C osures .

7.2.1. dient-lnitiated Closure.
7.2.2. Server-lnitiated Cl osure . S
7.2.3. Recovering from Abnormal C osure .
7.3. Normal O osure of Connections
7.4 Status Codeso
7.4.1. Defined Status dees Co
7.4.2. Reserved Status Code Ranges
8. FError Handling .

8.1. Handling Errors |n UTF 8 Encoded Eata
9. Extensions . e

9.1. Negotiating ExtenS|ons

9.2. Known Extensions
10. Security Considerations

10.1. Non-Browser Clients

10.2. Oigin Considerations .

10.3. Attacks On Infrastructure (Nhsklng)

10. 4. Inplenentation-Specific Lints

10. 5. WebSocket Cient Authentication . .

10. 6. Connection Confidentiality and Integrlty .

10. 7. Handling of Invalid Data . . .

10.8. Use of SHA-1 by the WebSocket Fﬁndshake
11. 1 ANA Consi derations . Coe

11.1. Registration of New URI Schenes

11.1.1. Registration of "ws" Schene

11.1.2. Registration of "wss" Scheme . . .
11.2. Registration of the "WbSocket" HITP Upgrade Keymord .
11.3. Registration of New HTTP Header Fields . .

11.3.1. Sec-WbSocket-Key

11. 3. 2. Sec- WbSocket - Ext ensi ons

11. 3. 3. Sec-WebSocket - Accept .

11. 3. 4. Sec-WebSocket - Prot oco

11. 3. 5. Sec-WebSocket - Ver si on .

11. 4. WebSocket Extension Nane Reglstry

11.5. WebSocket Subprotocol Nane Registry

11.6. WebSocket Version Number Registry .

11.7. WebSocket C ose Code Number Registry .

11.8. WebSocket Opcode Registry . .

11.9. WebSocket Frami ng Header Bits Reglstry . . .
12. Using the WebSocket Protocol from O her SpeC|f|cat|ons
13. Acknow edgenents . C e e e e e
14. References . . .

14.1. Normative References

14. 2. Informative References

Fette & Mel ni kov St andards Track

[Page 3]

RFC 6455 The WebSocket Prot ocol Decenber 2011

1. Introduction
1.1. Background
_This section is non-normative. _

Hi storically, creating web applications that need bidirectiona
communi cati on between a client and a server (e.g., instant messagi ng
and gam ng applications) has required an abuse of HTTP to poll the
server for updates while sending upstreamnotifications as distinct
HTTP cal | s [RFC6202] .

This results in a variety of problens:

0 The server is forced to use a nunber of different underlying TCP
connections for each client: one for sending information to the
client and a new one for each incom ng nessage.

o0 The wire protocol has a high overhead, with each client-to-server
message havi ng an HTTP header.

0o The client-side script is forced to maintain a mapping fromthe
out goi ng connections to the incom ng connection to track replies.

A sinmpler solution would be to use a single TCP connection for
traffic in both directions. This is what the WbSocket Protoco

provi des. Conbined with the WebSocket API [WBAPI], it provides an
alternative to HITP polling for two-way comuni cation froma web page
to a renote server.

The sane technique can be used for a variety of web applications:
games, stock tickers, nultiuser applications with sinultaneous
editing, user interfaces exposing server-side services in real ting,
etc.

The WebSocket Protocol is designed to supersede existing

bi di recti onal conmuni cation technol ogi es that use HTTP as a transport
| ayer to benefit fromexisting infrastructure (proxies, filtering,

aut hentication). Such technol ogies were inplenented as trade-offs
between efficiency and reliability because HTTP was not initially
meant to be used for bidirectional communication (see [RFC6202] for
further discussion). The WbSocket Protocol attenpts to address the
goal s of existing bidirectional HTTP technol ogies in the context of
the existing HTTP infrastructure; as such, it is designed to work
over HTTP ports 80 and 443 as well as to support HITP proxi es and
internediaries, even if this inplies some conplexity specific to the
current environment. However, the design does not Iimt WbSocket to
HTTP, and future inplenentations could use a sinpler handshake over a

Fette & Mel ni kov St andards Track [Page 4]

RFC 6455 The WebSocket Prot ocol Decenber 2011

dedi cated port w thout reinventing the entire protocol. This |ast
point is inmportant because the traffic patterns of interactive
nmessagi ng do not closely match standard HTTP traffic and can i nduce
unusual | oads on sone conponents.

1.2. Protocol Overview
_This section is non-nornative. _
The protocol has two parts: a handshake and the data transfer.
The handshake fromthe client |ooks as follows:

GET /chat HTTP/ 1.1

Host: server. exanpl e. com

Upgr ade: websocket

Connecti on: Upgrade

Sec- WebSocket - Key: dGhl | HNhbXBsZSBub25j ZQ==
Oigin: http://exanple.com

Sec- WebSocket - Prot ocol : chat, superchat
Sec- WebSocket - Ver si on: 13

The handshake fromthe server |ooks as foll ows:

HTTP/ 1.1 101 Switching Protocols

Upgr ade: websocket

Connection: Upgrade

Sec- WbSocket - Accept : s3pPLMBi Txa@kYGzzhZRbK+x Qo=
Sec- WbSocket - Prot ocol : chat

The leading line fromthe client follows the Request-Line fornat.
The leading line fromthe server follows the Status-Line format. The
Request - Li ne and St atus-Line productions are defined in [RFC2616] .

An unordered set of header fields cones after the leading line in
both cases. The neaning of these header fields is specified in
Section 4 of this docunent. Additional header fields nmay al so be
present, such as cookies [RFC6265]. The fornmat and parsing of
headers is as defined in [RFC2616] .

Once the client and server have both sent their handshakes, and if
t he handshake was successful, then the data transfer part starts.
This is a two-way conmuni cati on channel where each side can

i ndependently fromthe other, send data at will.

After a successful handshake, clients and servers transfer data back

and forth in conceptual units referred to in this specification as
"messages”". On the wire, a nessage is conposed of one or nore

Fette & Mel ni kov St andards Track [Page 5]

RFC 6455 The WebSocket Prot ocol Decenber 2011

franmes. The WebSocket nessage does not necessarily correspond to a
particul ar network layer fram ng, as a fragnmented nessage nmay be
coal esced or split by an internediary.

A frame has an associated type. Each franme belonging to the sane
message contains the sane type of data. Broadly speaking, there are
types for textual data (which is interpreted as UTF-8 [RFC3629]
text), binary data (whose interpretation is left up to the
application), and control franmes (which are not intended to carry
data for the application but instead for protocol-Ievel signaling,
such as to signal that the connection should be closed). This
versi on of the protocol defines six frane types and | eaves ten
reserved for future use

1.3. Openi ng Handshake
_This section is non-normative. _

The openi ng handshake is intended to be conpatible with HTTP-based
server-side software and internediaries, so that a single port can be
used by both HTTP clients talking to that server and WbSocket
clients talking to that server. To this end, the WbSocket client’s
handshake is an HTTP Upgrade request:

GET /chat HTTP/ 1.1

Host: server. exanpl e.com

Upgr ade: websocket

Connecti on: Upgrade

Sec- WbSocket - Key: dGhl | HNnbXBsZSBub25j ZQ==
Oigin: http://exanple.com

Sec- WbSocket - Prot ocol : chat, superchat
Sec- WebSocket - Ver si on: 13

In conpliance with [RFC2616], header fields in the handshake may be
sent by the client in any order, so the order in which different
header fields are received is not significant.

The "Request-URI" of the GET nethod [RFC2616] is used to identify the
endpoi nt of the WebSocket connection, both to allow nultiple domains
to be served fromone IP address and to allow multiple WbSocket
endpoints to be served by a single server

The client includes the hostnane in the | Host| header field of its

handshake as per [RFC2616], so that both the client and the server
can verify that they agree on which host is in use.

Fette & Mel ni kov St andards Track [Page 6]

RFC 6455 The WebSocket Prot ocol Decenber 2011

Addi tional header fields are used to select options in the WbSocket
Protocol. Typical options available in this version are the

subprot ocol sel ector (| Sec-WbSocket-Protocol|), list of extensions
support by the client (| Sec-WbSocket-Extensions|), |Oigin| header
field, etc. The | Sec-WbSocket-Protocol| request-header field can be
used to indicate what subprotocols (application-level protocols

| ayered over the WbSocket Protocol) are acceptable to the client.
The server selects one or none of the acceptable protocols and echoes
that value in its handshake to indicate that it has selected that

pr ot ocol

Sec- WebSocket - Prot ocol : chat

The | Origin| header field [RFC6454] is used to protect against

unaut hori zed cross-origin use of a WbSocket server by scripts using
the WebSocket APl in a web browser. The server is infornmed of the
script origin generating the WebSocket connection request. |If the
server does not wish to accept connections fromthis origin, it can
choose to reject the connection by sending an appropriate HTTP error
code. This header field is sent by browser clients; for non-browser
clients, this header field may be sent if it nmakes sense in the
context of those clients.

Finally, the server has to prove to the client that it received the
client’s WbSocket handshake, so that the server doesn't accept
connections that are not WbSocket connections. This prevents an
attacker fromtricking a WbSocket server by sending it carefully
crafted packets using XM_HttpRequest [XM.HttpRequest] or a form
submni ssi on.

To prove that the handshake was received, the server has to take two
pi eces of information and conbine themto forma response. The first
pi ece of information cones fromthe | Sec- WbSocket - Key| header field
in the client handshake:

Sec- WebSocket - Key: dGhl | HNhbXBsZSBub25j ZQ==

For this header field, the server has to take the value (as present
in the header field, e.g., the base64-encoded [RFC4648] version m nus
any leading and trailing whitespace) and concatenate this with the

G obally Unique lIdentifier (GQU D, [RFC4122]) "258EAFAS- E914- 47DA-
95CA- C5ABODC85B11" in string form which is unlikely to be used by
net wor k endpoi nts that do not understand the WebSocket Protocol. A
SHA-1 hash (160 bits) [FIPS. 180-3], base64-encoded (see Section 4 of
[RFC4648]), of this concatenation is then returned in the server’s
handshake.

Fette & Mel ni kov St andards Track [Page 7]

RFC 6455 The WebSocket Prot ocol Decenber 2011

Concretely, if as in the exanpl e above, the | Sec- WbSocket - Key|
header field had the val ue "dGnl | HNhbXBsZSBub25j ZzQ==", the server
woul d concatenate the string "258EAFA5- E914- 47DA- 95CA- C5ABODC85B11"
to formthe string "dGhl | HNhbXBsZSBub25j ZQ==258EAFA5- E914- 47 DA- 95CA-
C5ABODC85B11". The server would then take the SHA-1 hash of this,
giving the value 0xb3 Ox7a Ox4f 0x2c OxcO 0x62 0x4f 0x16 0x90 Oxf6
0x46 0x06 Oxcf 0x38 0x59 0x45 Oxb2 Oxbe Oxc4 Oxea. This value is

t hen base64-encoded (see Section 4 of [RFC4648]), to give the val ue
"s3pPLMBi Txa@kYG&GzhZRbK+x0o=". This value woul d then be echoed in
t he | Sec- WbSocket - Accept| header fi el d.

The handshake fromthe server is nmuch sinpler than the client
handshake. The first line is an HTTP Status-Line, with the status
code 101:

HTTP/ 1.1 101 Switchi ng Protocols

Any status code other than 101 indicates that the WbSocket handshake
has not conpleted and that the semantics of HITP still apply. The
headers follow the status code

The | Connection| and | Upgrade| header fields conplete the HITP
Upgrade. The | Sec- WebSocket - Accept| header field indicates whether
the server is willing to accept the connection. |If present, this
header field nmust include a hash of the client’s nonce sent in

| Sec- WebSocket - Key| along with a predefined GUD. Any other val ue
must not be interpreted as an acceptance of the connection by the
server.

HTTP/ 1.1 101 Switching Protocols

Upgr ade: websocket

Connection: Upgrade

Sec- WbSocket - Accept: s3pPLMBi Txa@kYGzzhZRbK+x Qo=

These fields are checked by the WebSocket client for scripted pages.

I f the | Sec- WbSocket - Accept| val ue does not match the expected
value, if the header field is mssing, or if the HTTP status code is
not 101, the connection will not be established, and WebSocket franes

will not be sent.
Option fields can also be included. 1In this version of the protocol
the main option field is | Sec- WbSocket - Protocol |, which indicates

the subprotocol that the server has selected. WhbSocket clients
verify that the server included one of the values that was specified
in the WbSocket client’s handshake. A server that speaks nultiple
subprotocols has to make sure it selects one based on the client’s
handshake and specifies it in its handshake.

Fette & Mel ni kov St andards Track [Page 8]

RFC 6455 The WebSocket Prot ocol Decenber 2011

Sec- WebSocket - Prot ocol : chat

The server can al so set cookie-related option fields to _set_
cooki es, as described in [RFC6265].

1.4. dosing Handshake
_This section is non-nornative. _
The cl osi ng handshake is far sinpler than the openi ng handshake.

Ei ther peer can send a control frane with data containing a specified
control sequence to begin the closing handshake (detailed in

Section 5.5.1). Upon receiving such a frame, the other peer sends a
Close frame in response, if it hasn’'t already sent one. Upon
receiving _that_ control frane, the first peer then closes the
connection, safe in the know edge that no further data is
forthconi ng.

After sending a control frame indicating the connection should be
cl osed, a peer does not send any further data; after receiving a

control frame indicating the connection should be closed, a peer

di scards any further data received.

It is safe for both peers to initiate this handshake sinultaneously.

The cl osi ng handshake is intended to conplenment the TCP cl osi ng
handshake (FI N ACK), on the basis that the TCP cl osi ng handshake is
not always reliable end-to-end, especially in the presence of

i ntercepting proxies and other internediaries.

By sending a Close frame and waiting for a Close frane in response,
certain cases are avoi ded where data may be unnecessarily lost. For
i nstance, on sone platforns, if a socket is closed with data in the
recei ve queue, a RST packet is sent, which will then cause recv() to
fail for the party that received the RST, even if there was data

wai ting to be read.

1.5. Design Phil osophy
_This section is non-normative. _
The WebSocket Protocol is designed on the principle that there should
be minimal framing (the only framng that exists is to nmake the
protocol frane-based instead of stream based and to support a

di stinction between Unicode text and binary franes). It is expected
that nmetadata woul d be | ayered on top of WebSocket by the application

Fette & Mel ni kov St andards Track [Page 9]

RFC 6455 The WebSocket Prot ocol Decenber 2011

layer, in the sane way that netadata is |layered on top of TCP by the
application layer (e.g., HITP)

Conceptual |y, WebSocket is really just a layer on top of TCP that
does the foll ow ng:

0 adds a web origin-based security nodel for browsers

0 adds an addressing and protocol nam ng mechani smto support
mul tiple services on one port and multiple host names on one |IP
addr ess

o layers a fram ng nmechanismon top of TCP to get back to the IP
packet nechanismthat TCP is built on, but without length lints

o includes an additional closing handshake in-band that is designed
to work in the presence of proxies and other internediaries

O her than that, WbSocket adds nothing. Basically it is intended to
be as close to just exposing raw TCP to script as possible given the
constraints of the Web. 1t’s also designed in such a way that its
servers can share a port with HTTP servers, by having its handshake
be a valid HTTP Upgrade request. One could conceptually use other
protocols to establish client-server nessaging, but the intent of
WebSockets is to provide a relatively sinple protocol that can
coexist with HTTP and depl oyed HTTP i nfrastructure (such as proxies)
and that is as close to TCP as is safe for use with such
infrastructure given security considerations, with targeted additions
to sinplify usage and keep sinple things sinple (such as the addition
of message senmantics).

The protocol is intended to be extensible; future versions wll
likely introduce additional concepts such as nultiplexing.

1.6. Security Mde
_This section is non-nornative. _

The WebSocket Protocol uses the origin nodel used by web browsers to
restrict which web pages can contact a WebSocket server when the
WebSocket Protocol is used froma web page. Naturally, when the
WebSocket Protocol is used by a dedicated client directly (i.e., not
froma web page through a web browser), the origin nodel is not
useful, as the client can provide any arbitrary origin string.

This protocol is intended to fail to establish a connection with

servers of pre-existing protocols |like SMIP [RFC5321] and HTTP, while
all owi ng HTTP servers to opt-in to supporting this protocol if

Fette & Mel ni kov St andards Track [Page 10]

RFC 6455 The WebSocket Prot ocol Decenber 2011

desired. This is achieved by having a strict and el aborate handshake
and by limting the data that can be inserted into the connection

bef ore the handshake is finished (thus linmiting how nmuch the server
can be influenced).

It is sinmlarly intended to fail to establish a connection when data
fromother protocols, especially HITP, is sent to a WbSocket server
for exanple, as might happen if an HTM. "form' were subnmitted to a
WebSocket server. This is primarily achieved by requiring that the
server prove that it read the handshake, which it can only do if the
handshake contains the appropriate parts, which can only be sent by a
WebSocket client. In particular, at the time of witing of this
specification, fields starting with | Sec-| cannot be set by an
attacker froma web browser using only HTM. and JavaScript APlIs such
as XM.Htt pRequest [XM_HttpRequest].

1.7. Relationship to TCP and HTTP
_This section is non-nornative. _

The WebSocket Protocol is an independent TCP-based protocol. Its
only relationship to HTTP is that its handshake is interpreted by
HTTP servers as an Upgrade request.

By default, the WebSocket Protocol uses port 80 for regular WbSocket
connections and port 443 for WbSocket connections tunnel ed over
Transport Layer Security (TLS) [RFC2818].

1.8. Establishing a Connection
_This section is non-nornative. _

Wien a connection is to be made to a port that is shared by an HITP
server (a situation that is quite likely to occur with traffic to
ports 80 and 443), the connection will appear to the HITP server to
be a regular GET request with an Upgrade offer. In relatively sinple
setups with just one | P address and a single server for all traffic
to a single hostname, this night allow a practical way for systens
based on the WebSocket Protocol to be deployed. In nore el aborate
setups (e.g., with load balancers and nultiple servers), a dedicated
set of hosts for WebSocket connections separate fromthe HITP servers
is probably easier to manage. At the tine of witing of this
specification, it should be noted that connections on ports 80 and
443 have significantly different success rates, with connections on
port 443 being significantly nore likely to succeed, though this may
change with tine.

Fette & Mel ni kov St andards Track [Page 11]

RFC 6455 The WebSocket Prot ocol Decenber 2011

1.9. Subprotocols Using the WebSocket Protoco
_This section is non-nornative. _

The client can request that the server use a specific subprotocol by
i ncluding the | Sec- WbSocket-Protocol| field in its handshake. If it
is specified, the server needs to include the sane field and one of
the sel ected subprotocol values in its response for the connection to
be establ i shed.

These subprotocol names should be registered as per Section 11.5. To
avoid potential collisions, it is reconmended to use nanes that
contain the ASCI| version of the domain nane of the subprotocol’s
originator. For exanple, if Exanple Corporation were to create a
Chat subprotocol to be inplenented by nany servers around the Wb
they could name it "chat.exanple.conf. |If the Exanple Organization
called their conpeting subprotocol "chat.exanmple.org", then the two
subprotocol s could be inplenented by servers sinmultaneously, with the
server dynamically selecting which subprotocol to use based on the
val ue sent by the client.

Subprot ocol s can be versioned in backward-inconpatible ways by
changi ng the subprotocol nane, e.g., going from
"booki ngs. exanpl e. net" to "v2. booki ngs. exanpl e.net". These
subprotocol s woul d be consi dered conpletely separate by WbSocket
clients. Backward-conpatible versioning can be inplenented by
reusi ng the same subprotocol string but carefully designing the
actual subprotocol to support this kind of extensibility.

2. Conformance Requirenents

Al'l diagranms, exanples, and notes in this specification are non-
normative, as are all sections explicitly marked non-nornmative.
Everything else in this specification is nornmative.

The key words "MJST", "MJST NOT", "REQU RED', "SHALL", "SHALL NOT",
"SHOULD', "SHOULD NOT", "RECOMMENDED', "MAY", and "OPTIONAL" in this
document are to be interpreted as described in [RFC2119].

Requi rements phrased in the inperative as part of algorithms (such as
"strip any | eading space characters” or "return false and abort these
steps") are to be interpreted with the neaning of the key word
("MUST", "SHOULD', "MAY", etc.) used in introducing the algorithm

Fette & Mel ni kov St andards Track [Page 12]

RFC 6455 The WebSocket Prot ocol Decenber 2011

Conf ormance requirenents phrased as al gorithnms or specific steps MAY
be i nplemented in any manner, so long as the end result is
equivalent. (In particular, the algorithms defined in this
specification are intended to be easy to follow and not intended to
be performant.)

2.1. Termnology and G her Conventions

_ASCI I _ shall mean the character-encodi ng scheme defined in
[ANSI . X3-4.1986].

Thi s docunent nekes reference to UTF-8 val ues and uses UTF-8
notational formats as defined in STD 63 [RFC3629].

Key terms such as named algorithnms or definitions are indicated like
this.

Nanmes of header fields or variables are indicated |ike |this|
Variabl e values are indicated like /this/.

Thi s docunent references the procedure to _Fail the WbSocket
Connection_. This procedure is defined in Section 7.1.7.

Converting a string to ASCII | owercase nmeans replacing all
characters in the range U+0041 to WOO5A (i.e., LATIN CAPITAL LETTER
A to LATIN CAPI TAL LETTER Z) with the correspondi ng characters in the
range U+0061 to U+007A (i.e., LATIN SVMALL LETTER A to LATI N SMALL
LETTER 2).

Conparing two strings in an _ASClI| case-insensitive_ manner neans
conparing them exactly, code point for code point, except that the
characters in the range U+0041 to WOO5A (i.e., LATIN CAPITAL LETTER
A to LATIN CAPI TAL LETTER Z) and the correspondi ng characters in the
range W+0061 to U+OO7A (i.e., LATIN SMALL LETTER A to LATIN SMALL
LETTER Z) are considered to al so match.

The term"URI" is used in this docunent as defined in [RFC3986].

When an inplenentation is required to _send_ data as part of the
WebSocket Protocol, the inplenentation MAY del ay the actua
transmission arbitrarily, e.g., buffering data so as to send fewer IP
packets.

Note that this docunent uses both [RFC5234] and [RFC2616] variants of
ABNF in different sections.

Fette & Mel ni kov St andards Track [Page 13]

RFC 6455 The WebSocket Prot ocol Decenber 2011

3.

4.

4.

WebSocket URI s

This specification defines two URI schenes, using the ABNF syntax
defined in RFC 5234 [RFC5234], and terninol ogy and ABNF productions
defined by the URI specification RFC 3986 [RFC3986].

ws-URI = "ws:" "//" host [":" port] path ["?" query]
wss-URI = "wss:" "//" host [":" port] path ["?" query]
host <host, defined in [RFC3986], Section 3.2.2>

port <port, defined in [RFC3986], Section 3.2.3>
pat h <pat h- abenpty, defined in [RFC3986], Section 3.3>
query = <query, defined in [RFC3986], Section 3.4>

The port conponent is OPTIONAL; the default for "ws" is port 80,
while the default for "wss" is port 443.

The URI is called "secure" (and it is said that "the secure flag is
set") if the schene conponent natches "wss" case-insensitively.

The "resource-nanme" (also known as /resource name/ in Section 4.1)
can be constructed by concatenating the foll ow ng:

o "/" if the path conponent is enpty

o the path conponent

o "?" if the query conponent is non-enpty
o the query conponent

Fragnent identifiers are neaningless in the context of WbSocket URIs
and MUST NOT be used on these URIs. As with any URI schene, the
character "#", when not indicating the start of a fragnent, MJST be
escaped as %@3.

Openi ng Handshake
1. dient Requirenents

To _Establish a WbSocket Connection_, a client opens a connection
and sends a handshake as defined in this section. A connection is
defined to initially be in a CONNECTING state. A client will need to
supply a /host/, /port/, /resource nane/, and a /secure/ flag, which
are the components of a WebSocket URI as discussed in Section 3,
along with a list of /protocols/ and /extensions/ to be used.
Additionally, if the client is a web browser, it supplies /origin/.

Fette & Mel ni kov St andards Track [Page 14]

RFC 6455 The WebSocket Prot ocol Decenber 2011

Cients running in controlled environnents, e.g., browsers on nobile
handsets tied to specific carriers, MAY offload the nanagenment of the
connection to another agent on the network. In such a situation, the
client for the purposes of this specification is considered to

i ncl ude both the handset software and any such agents.

When the client is to _Establish a WebSocket Connection_ given a set
of (/host/, /port/, /resource nane/, and /secure/ flag), along with a
list of /protocols/ and /extensions/ to be used, and an /origin/ in
the case of web browsers, it MJST open a connection, send an opening
handshake, and read the server’s handshake in response. The exact
requi renents of how the connection should be opened, what shoul d be
sent in the openi ng handshake, and how the server’'s response shoul d
be interpreted are as follows in this section. 1In the follow ng
text, we will use terns from Section 3, such as "/host/" and
"/secure/ flag" as defined in that section.

1. The conponents of the WbSocket URI passed into this algorithm
(/host/, /port/, /resource nanme/, and /secure/ flag) MJIST be
valid according to the specification of WbSocket URIs specified
in Section 3. If any of the conponents are invalid, the client
MUST _Fail the WebSocket Connection_ and abort these steps.

2. If the client already has a WbSocket connection to the renote
host (I P address) identified by /host/ and port /port/ pair, even
if the remote host is known by another nane, the client MJST wait
until that connection has been established or for that connection
to have failed. There MJUST be no nore than one connection in a
CONNECTI NG state. If nultiple connections to the same | P address
are attenpted sinmultaneously, the client MJST serialize them so
that there is no nore than one connection at a tinme running
t hrough the follow ng steps.

If the client cannot determine the |IP address of the renote host
(for example, because all conmunication is being done through a
proxy server that perforns DNS queries itself), then the client
MUST assune for the purposes of this step that each host nane
refers to a distinct renote host, and instead the client SHOULD
limt the total nunber of sinultaneous pending connections to a
reasonably | ow nunber (e.g., the client might allow sinultaneous
pendi ng connections to a.exanple.comand b. exanple.com but if
thirty sinultaneous connections to a single host are requested,
that may not be allowed). For exanple, in a web browser context,
the client needs to consider the nunber of tabs the user has open
in setting alimt to the nunber of sinultaneous pending

connecti ons.

Fette & Mel ni kov St andards Track [Page 15]

RFC 6455 The WebSocket Prot ocol Decenber 2011

NOTE: This nakes it harder for a script to performa denial -of-
service attack by just opening a | arge nunber of WebSocket
connections to a renote host. A server can further reduce the
| oad on itself when attacked by pausing before closing the
connection, as that will reduce the rate at which the client
reconnects.

NOTE: There is no linmt to the nunber of established WebSocket
connections a client can have with a single renpte host. Servers
can refuse to accept connections from hosts/|P addresses with an
excessi ve nunber of existing connections or di sconnect resource-
hoggi ng connecti ons when suffering high | oad.

3. _Proxy Usage : If the client is configured to use a proxy when
usi ng the WebSocket Protocol to connect to host /host/ and port
/port/, then the client SHOULD connect to that proxy and ask it
to open a TCP connection to the host given by /host/ and the port
given by /port/.

EXAMPLE: For exanple, if the client uses an HTTP proxy for al
traffic, then if it was to try to connect to port 80 on server
exanple.com it mght send the following Iines to the proxy
server:

CONNECT exanpl e.com 80 HTTP/ 1.1
Host: exanpl e.com

If there was a password, the connection might |ook |ike:

CONNECT exanpl e.com 80 HTTP/ 1.1
Host: exanpl e. com
Proxy-aut hori zation: Basic ZWRuYWLvZGU6bnBj YXBI cyE=

If the client is not configured to use a proxy, then a direct TCP
connecti on SHOULD be opened to the host given by /host/ and the
port given by /port/.

NOTE: | nplenentations that do not expose explicit U for

sel ecting a proxy for WbSocket connections separate from ot her
proxi es are encouraged to use a SOCKS5 [RFC1928] proxy for
WebSocket connections, if available, or failing that, to prefer
the proxy configured for HTTPS connecti ons over the proxy
configured for HTTP connecti ons.

For the purpose of proxy autoconfiguration scripts, the URl to
pass the function MJUST be constructed from/host/, /port/,
/resource nane/, and the /secure/ flag using the definition of a
WebSocket URI as given in Section 3.

Fette & Mel ni kov St andards Track [Page 16]

RFC 6455 The WebSocket Prot ocol Decenber 2011

NOTE: The WebSocket Protocol can be identified in proxy
aut oconfiguration scripts fromthe schene ("ws" for unencrypted
connections and "wss" for encrypted connections).

4. If the connection could not be opened, either because a direct
connection failed or because any proxy used returned an error,
then the client MUST Fail the WbSocket Connection_ and abort
t he connection attenpt.

5. If /secure/ is true, the client MJUST performa TLS handshake over
the connection after opening the connection and before sending
t he handshake data [RFC2818]. |If this fails (e.g., the server’'s
certificate could not be verified), then the client MUST Fai
t he WebSocket Connection_ and abort the connection. O herw se,
all further communication on this channel MJST run through the
encrypted tunnel [RFC5246].

Clients MIST use the Server Nane |Indication extension in the TLS
handshake [RFC6066] .

Once a connection to the server has been established (including a
connection via a proxy or over a TLS-encrypted tunnel), the client
MUST send an openi ng handshake to the server. The handshake consists
of an HTTP Upgrade request, along with a list of required and
optional header fields. The requirenents for this handshake are as
fol | ows.

1. The handshake MJUST be a valid HITP request as specified by
[RFC2616] .

2. The met hod of the request MJUST be GET, and the HTTP versi on MJST
be at least 1.1.

For exanple, if the WbSocket URI is "ws://exanple.confchat",
the first Iine sent should be "GET /chat HITP/1.1".

3. The "Request-URI" part of the request MJST natch the /resource
nane/ defined in Section 3 (a relative URI) or be an absolute
http/ https URI that, when parsed, has a /resource nane/, /host/,
and /port/ that match the correspondi ng ws/wss URI

4. The request MJST contain a | Host| header field whose val ue
contains /host/ plus optionally ":" followed by /port/ (when not
using the default port).

5. The request MJST contain an | Upgrade| header field whose val ue
MUST i ncl ude the "websocket"” keyword.

Fette & Mel ni kov St andards Track [Page 17]

RFC 6455

10.

The WebSocket Prot ocol Decenber 2011

The request MJST contain a | Connection| header field whose val ue
MUST i ncl ude the "Upgrade" token

The request MJST include a header field with the name

| Sec- WebSocket - Key| . The value of this header field MIST be a
nonce consisting of a randonmly sel ected 16-byte val ue that has
been base64-encoded (see Section 4 of [RFC4648]). The nonce
MUST be sel ected randomly for each connection

NOTE: As an exanple, if the randomy selected value was the
sequence of bytes 0x01 0x02 0x03 0x04 0x05 0x06 0x07 0x08 0x09
Ox0a Ox0b 0xOc 0x0d OxOe 0OxOf 0x10, the value of the header
field woul d be "AQ DBAUGBwgJCgs MDQUPEC=="

The request MJST include a header field with the name | Oigin|

[RFC6454] if the request is coming froma browser client. |If
the connection is froma non-browser client, the request NMNAY
include this header field if the semantics of that client match
t he use-case described here for browser clients. The value of
this header field is the ASCII serialization of origin of the
context in which the code establishing the connection is

runni ng. See [RFC6454] for the details of how this header field
val ue i s constructed.

As an exanple, if code downl oaded from www. exanpl e.com attenpts
to establish a connection to ww2. exanpl e.com the value of the
header field would be "http://ww. exanpl e. coni.

The request MJST include a header field with the name
| Sec- WebSocket - Version|. The value of this header field MJUST be
13.

NOTE: Al t hough draft versions of this docunment (-09, -10, -11
and -12) were posted (they were nostly conprised of editoria
changes and clarifications and not changes to the wire
protocol), values 9, 10, 11, and 12 were not used as valid

val ues for Sec-WbSocket-Version. These values were reserved in
the ANA registry but were not and will not be used.

The request MAY include a header field with the nane

| Sec- WebSocket - Protocol |. If present, this value indicates one
or nore conma-separ ated subprotocol the client wi shes to speak
ordered by preference. The elenments that conprise this val ue
MUST be non-enpty strings with characters in the range U+0021 to
W007E not including separator characters as defined in

[RFC2616] and MJST all be unique strings. The ABNF for the

val ue of this header field is 1#token, where the definitions of
constructs and rules are as given in [RFC2616] .

Fette & Mel ni kov St andards Track [Page 18]

RFC 6455 The WebSocket Prot ocol Decenber 2011

11.

12.

The request MAY include a header field with the nane

| Sec- WbSocket - Extensions|. |If present, this value indicates
the protocol -1evel extension(s) the client wishes to speak. The
interpretation and format of this header field is described in
Section 9. 1.

The request MAY include any other header fields, for exanple,
cooki es [RFC6265] and/or authentication-rel ated header fields
such as the | Aut hori zation| header field [RFC2616], which are
processed according to docunents that define them

Once the client’s opening handshake has been sent, the client MJST
wait for a response fromthe server before sending any further data.
The client MJUST validate the server’s response as foll ows:

1

If the status code received fromthe server is not 101, the
client handl es the response per HITP [RFC2616] procedures. In
particular, the client mght performauthentication if it
receives a 401 status code; the server night redirect the client
using a 3xx status code (but clients are not required to foll ow
thenm), etc. O herw se, proceed as foll ows.

If the response lacks an | Upgrade| header field or the | Upgrade
header field contains a value that is not an ASCI| case-
insensitive match for the val ue "websocket”, the client MJST
Fail the WebSocket Connection.

If the response | acks a | Connection| header field or the

| Connection| header field doesn’t contain a token that is an
ASCI | case-insensitive match for the val ue "Upgrade", the client
MUST Fail the WbSocket Connection_.

If the response | acks a | Sec- WbSocket - Accept| header field or

t he | Sec- WebSocket - Accept| contains a value other than the
base64- encoded SHA-1 of the concatenation of the | Sec-WbSocket -
Key| (as a string, not base64-decoded) with the string "258EAFA5-
E914- 47DA- 95CA- C5ABODC85B11" but ignoring any | eading and
trailing whitespace, the client MUST _Fail the WebSocket
Connection_.

If the response includes a | Sec- WebSocket - Ext ensi ons| header
field and this header field indicates the use of an extension
that was not present in the client’s handshake (the server has
i ndi cated an extension not requested by the client), the client
MJUST _Fail the WebSocket Connection_. (The parsing of this
header field to determ ne which extensions are requested is

di scussed in Section 9.1.)

Fette & Mel ni kov St andards Track [Page 19]

RFC 6455 The WebSocket Prot ocol Decenber 2011

6. |If the response includes a | Sec- WbSocket - Prot ocol | header field
and this header field indicates the use of a subprotocol that was
not present in the client’s handshake (the server has indicated a
subprotocol not requested by the client), the client MIST _Fail
the WebSocket Connection_.

If the server’s response does not conformto the requirenents for the
server’s handshake as defined in this section and in Section 4.2.2,
the client MUST _Fail the WebSocket Connection_.

Pl ease note that according to [RFC2616], all header field nanes in
both HTTP requests and HITP responses are case-insensitive.

If the server’s response is validated as provided for above, it is
said that _The WebSocket Connection is Established_ and that the
WebSocket Connection is in the OPEN state. The Extensions In Use_
is defined to be a (possibly enpty) string, the value of which is
equal to the value of the | Sec- WbSocket - Ext ensi ons| header field
supplied by the server’s handshake or the null value if that header
field was not present in the server’s handshake. The _Subprotocol In
Use_is defined to be the value of the | Sec- WbSocket - Prot ocol

header field in the server’s handshake or the null value if that
header field was not present in the server’s handshake.

Additionally, if any header fields in the server’s handshake indicate
that cooki es should be set (as defined by [RFC6265]), these cookies
are referred to as _Cookies Set During the Server’s Opening
Handshake_.

4.2. Server-Side Requirenents

Servers MAY of fl oad t he managenent of the connection to other agents
on the network, for exanple, |oad balancers and reverse proxies. In
such a situation, the server for the purposes of this specification

is considered to include all parts of the server-side infrastructure
fromthe first device to termnate the TCP connection all the way to
the server that processes requests and sends responses.

EXAMPLE: A data center mght have a server that responds to WbSocket
requests with an appropri ate handshake and then passes the connection
to another server to actually process the data franes. For the

pur poses of this specification, the "server"” is the conbination of
bot h conput ers.

Fette & Mel ni kov St andards Track [Page 20]

RFC 6455 The WebSocket Prot ocol Decenber 2011

4.2.1. Reading the dient’s Openi ng Handshake

When a client starts a WebSocket connection, it sends its part of the
openi ng handshake. The server must parse at |least part of this
handshake in order to obtain the necessary information to generate
the server part of the handshake.

The client’s opening handshake consists of the followi ng parts. |If
the server, while reading the handshake, finds that the client did
not send a handshake that matches the description below (note that as
per [RFC2616], the order of the header fields is not inportant),
including but not Iimted to any violations of the ABNF grammar
specified for the conponents of the handshake, the server MJST stop
processing the client’s handshake and return an HTTP response with an
appropriate error code (such as 400 Bad Request).

1. An HTTP/ 1.1 or higher GET request, including a "Request-UR"
[RFC2616] that should be interpreted as a /resource nane/
defined in Section 3 (or an absolute HTTP/HTTPS URI contai ni ng
the /resource nane/).

2. A | Host| header field containing the server’s authority.

3. An | Upgrade| header field containing the value "websocket",
treated as an ASCI| case-insensitive val ue.

4. A | Connection| header field that includes the token "Upgrade"
treated as an ASClI| case-insensitive val ue.

5. A | Sec- WebSocket - Key| header field with a base64-encoded (see
Section 4 of [RFC4648]) value that, when decoded, is 16 bytes in
| engt h.

6. A | Sec- WbSocket - Ver si on| header field, with a value of 13.

7. Optionally, an |Oigin| header field. This header field is sent
by all browser clients. A connection attenpt |lacking this
header field SHOULD NOT be interpreted as coning froma browser
client.

8. Optionally, a | Sec- WbSocket-Protocol| header field, with a |ist
of val ues indicating which protocols the client would like to
speak, ordered by preference.

9. Optionally, a | Sec- WbSocket - Ext ensi ons| header field, with a
list of values indicating which extensions the client would Iike
to speak. The interpretation of this header field is discussed
in Section 9.1.

Fette & Mel ni kov St andards Track [Page 21]

RFC 6455 The WebSocket Prot ocol Decenber 2011

4.

Fette & Mel ni kov

1

2.

0.

2.

Optionally, other header fields, such as those used to send
cooki es or request authentication to a server. Unknown header
fields are ignored, as per [RFC2616].

Sendi ng the Server’s (Openi ng Handshake

Wien a client establishes a WbSocket connection to a server, the
server MJST conplete the followi ng steps to accept the connection and
send the server’s openi ng handshake.

1

If the connection is happening on an HTTPS (HTTP-over-TLS) port,
performa TLS handshake over the connection. |If this fails
(e.g., the client indicated a host nane in the extended client
hell o "server_nanme" extension that the server does not host),
then cl ose the connection; otherw se, all further comunication
for the connection (including the server’s handshake) MJST run
t hrough the encrypted tunnel [RFC5246].

The server can performadditional client authentication, for
exanpl e, by returning a 401 status code with the corresponding
| WAM Aut hent i cate| header field as described in [RFC2616]

The server MAY redirect the client using a 3xx status code
[RFC2616]. Note that this step can happen together wth, before,
or after the optional authentication step described above.

Establish the follow ng infornmation:

/origin/
The | Origin|] header field in the client’s handshake indicates
the origin of the script establishing the connection. The
originis serialized to ASCIlI and converted to | owercase. The
server MAY use this information as part of a determ nation of
whet her to accept the inconming connection. |If the server does
not validate the origin, it will accept connections from
anywhere. |f the server does not wish to accept this
connection, it MJST return an appropriate HTTP error code
(e.g., 403 Forbidden) and abort the WbSocket handshake

described in this section. For npre detail, refer to
Section 10.
/ key/

The | Sec- WebSocket - Key| header field in the client’s handshake
i ncl udes a base64-encoded value that, if decoded, is 16 bytes
in length. This (encoded) value is used in the creation of
the server’s handshake to indicate an acceptance of the
connection. It is not necessary for the server to base64-
decode the | Sec- WebSocket - Key| val ue.

St andards Track [Page 22]

RFC 6455 The WebSocket Prot ocol Decenber 2011

/version/
The | Sec- WebSocket - Versi on| header field in the client’s
handshake i ncludes the version of the WbSocket Protocol wth
which the client is attenpting to comunicate. If this
versi on does not match a version understood by the server, the
server MUST abort the WebSocket handshake described in this
section and instead send an appropriate HTTP error code (such
as 426 Upgrade Required) and a | Sec- WebSocket - Ver si on| header
field indicating the version(s) the server is capable of
under st andi ng.

/ resour ce nane/
An identifier for the service provided by the server. |[If the
server provides nultiple services, then the value should be
derived fromthe resource name given in the client’s handshake
in the "Request-URI" [RFC2616] of the GET method. |If the
requested service is not available, the server MIJST send an
appropriate HITP error code (such as 404 Not Found) and abort
t he WebSocket handshake.

/ subpr ot ocol /
Either a single value representing the subprotocol the server
is ready to use or null. The value chosen MJST be derived
fromthe client’s handshake, specifically by selecting one of
the values fromthe | Sec- WbSocket-Protocol| field that the
server is willing to use for this connection (if any). |If the
client’s handshake did not contain such a header field or if
the server does not agree to any of the client’s requested
subprotocols, the only acceptable value is null. The absence
of such a field is equivalent to the null value (neaning that
if the server does not wish to agree to one of the suggested
subprotocols, it MJUST NOT send back a | Sec- WbSocket - Pr ot ocol
header field in its response). The enpty string is not the
same as the null value for these purposes and is not a |l ega
value for this field. The ABNF for the value of this header
field is (token), where the definitions of constructs and
rules are as given in [RFC2616] .

/ ext ensi ons/
A (possibly enpty) list representing the protocol-I|eve
extensions the server is ready to use. |If the server supports
nmul ti pl e extensions, then the value MJUST be derived fromthe
client’s handshake, specifically by selecting one or nore of
the values fromthe | Sec- WbhSocket - Extensions| field. The
absence of such a field is equivalent to the null value. The
enpty string is not the sanme as the null value for these

Fette & Mel ni kov St andards Track [Page 23]

RFC 6455 The WebSocket Prot ocol Decenber 2011

purposes. Extensions not listed by the client MJUST NOT be
listed. The nmethod by which these val ues shoul d be sel ected
and interpreted is discussed in Section 9.1.

5. If the server chooses to accept the incom ng connection, it MJST
reply with a valid HTTP response indicating the foll ow ng.

1. A Status-Line with a 101 response code as per RFC 2616
[RFC2616]. Such a response could look |ike "HTTP/1.1 101
Swi t chi ng Protocol s"

2. An | Upgrade| header field with value "websocket" as per RFC
2616 [RFC2616].

3. A | Connection| header field with val ue "Upgrade"

4. A | Sec- WbSocket - Accept| header field. The value of this
header field is constructed by concatenating /key/, defined
above in step 4 in Section 4.2.2, with the string "258EAFAS5-
E914- 47DA- 95CA- C5ABODC85B11", taking the SHA-1 hash of this
concatenated value to obtain a 20-byte val ue and base64-
encodi ng (see Section 4 of [RFC4648]) this 20-byte hash

The ABNF [RFC2616] of this header field is defined as
fol | ows:

Sec- WbSocket - Accept = base64-val ue- non-enpty
base64- val ue-non-enpty = (1*base64-data [base64-padding])
base64- paddi ng

base64- dat a 4baseb64- char act er

base64- paddi ng (2base64- character "==")
(3base64-character "=")
base64-character = ALPHA | DIGT | "+" | "/"

NOTE: As an exanple, if the value of the | Sec- WbSocket - Key| header
field in the client’s handshake were "dGChl | HNhbXBsZSBub25j ZQ==", the
server woul d append the string "258EAFA5- E914- 47DA- 95CA- C5ABODC85B11"
to formthe string "dGhl | HNhbXBsZSBub25j ZQ==258EAFA5- E914- 47DA- 95CA-
C5ABODC85B11". The server would then take the SHA-1 hash of this
string, giving the value O0xb3 0Ox7a 0x4f O0x2c OxcO 0x62 Ox4f 0x16 0x90
Oxf 6 0x46 0x06 Oxcf 0x38 0x59 0x45 Oxb2 Oxbe Oxc4 Oxea. This value
is then base64-encoded, to give the val ue

"s3pPLMBI Txa@@kYG&zzhZRbK+xCQo=", which would be returned in the

| Sec- WebSocket - Accept| header field.

5. Optionally, a | Sec-WebSocket -Protocol| header field, with a
val ue /subprotocol/ as defined in step 4 in Section 4.2.2.

Fette & Mel ni kov St andards Track [Page 24]

RFC 6455 The WebSocket Prot ocol Decenber 2011

6. Optionally, a | Sec-WbSocket - Ext ensi ons| header field, with a
val ue /extensions/ as defined in step 4 in Section 4.2.2. |If
mul tiple extensions are to be used, they can all be listed in
a single | Sec- WwbSocket - Ext ensi ons| header field or split
between multiple instances of the | Sec- WbSocket - Ext ensi ons
header field.

This conpl etes the server’s handshake. |f the server finishes these
steps without aborting the WebSocket handshake, the server considers
t he WebSocket connection to be established and that the WbSocket
connection is in the OPEN state. At this point, the server may begin
sendi ng (and receiving) data.

4.3. Collected ABNF for New Header Fields Used in Handshake

This section is using ABNF syntax/rules from Section 2.1 of
[RFC2616], including the "inplied *LW5 rul e"

Note that the follow ng ABNF conventions are used in this section
Sone nanmes of the rules correspond to nanmes of the correspondi ng
header fields. Such rules express values of the correspondi ng header
fields, for exanple, the Sec-WbSocket-Key ABNF rul e describes syntax
of the | Sec- WbSocket - Key| header field value. ABNF rules with the
"-Client" suffix in the nane are only used in requests sent by the
client to the server; ABNF rules with the "-Server" suffix in the
nane are only used in responses sent by the server to the client.

For exanple, the ABNF rul e Sec- WbSocket - Protocol -Cient describes
syntax of the | Sec- WbSocket-Protocol| header field value sent by the
client to the server

The foll owi ng new header fields can be sent during the handshake from
the client to the server

Sec- WbSocket - Key = base64-val ue- non-enpty
Sec- WbSocket - Ext ensi ons = extension-|i st
Sec- WbSocket - Prot ocol -Cl i ent = 1#t oken
Sec- WebSocket - Versi on-C i ent = version

base64- val ue-non-enpty = (1*base64-data [base64-padding])
base64- paddi ng

base64- dat a 4baseb4- char act er

base64- paddi ng (2base64- character "==")
(3base64-character "=")
base64-character = ALPHA | DIGT | "+" | "/"

extension-list = 1#extension

ext ensi on = extension-token *(";
ext ensi on-t oken = regi st ered-token
regi stered-token = token

ext ensi on- param)

Fette & Mel ni kov St andards Track [Page 25]

RFC 6455 The WebSocket Prot ocol Decenber 2011

4.4,

Fet

extension-param = token ["=" (token | quoted-string)]
; When using the quoted-string syntax variant, the val ue
;